Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Supplementary Information for

Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems

Roel S. Sánchez-Carrera and Boris Kozinsky*

Research and Technology Center North America Robert Bosch LLC Cambridge, Massachusetts 02142

*E-mail: boris.kozinsky@us.bosch.com

Atom	Х	Y	Z	Atom	Х	Y	Z
C	0.02572	3.79329	3.33621	C	-0.33570	5.03110	1.46227
C	0.20550	-0.49235	0.55215	C	0.36219	-0.05950	-0.56353
C	-1.22362	3.46338	4.23482	C	-1.78620	5.48124	0.98192
C	1.45512	-0.16310	-0.34637	C	1.81269	-0.50764	-0.08118
LI	-0.35914	5.70525	4.85447	NA	-0.72407	7.67663	2.51885
LI	0.58999	-2.40438	-0.96538	NA	0.75364	-2.70892	-1.61212
LI	-0.92533	1.38976	2.69746	NA	-1.48442	2.72710	-0.15090
LI	1.15696	1.91111	1.19052	NA	1.51026	2.24693	1.04764
0	-0.12559	0.39663	1.38299	0	-0.01786	1.09189	-0.21439
0	-0.35529	-1.59648	0.37502	0	0.04311	3.88007	1.11069
0	0.35706	2.90460	2.50511	0	-0.31114	-0.86323	-1.25240
0	0.58608	4.89761	3.51353	0	0.33912	5.83270	2.15213
0	-1.54317	4.35712	5.06234	0	-2.16701	6.62655	1.34052
0	-1.77033	2.35817	4.04178	0	2.19458	-1.65347	-0.43676
0	1.77462	-1.05721	-1.17355	0	-2.42901	4.66412	0.28841
0	2.00208	0.94203	-0.15360	0	2.45458	0.31144	0.61091

Table S1. DFT/B3PW91/Sadlej optimized atomic coordinates (in Å) for $Li_2C_2O_4$ and $Na_2C_2O_4$ molecular dimers.

Table S2. DFT/B3PW91/Sadlej optimized atomic coordinates (in Å) for HCO_2Li and HCO_2Na molecular dimers.

Atom	Х	Y	Ζ	Atom	Х	Y	Z
С	2.23030	5.56204	1.37037	C	3.78710	5.49212	4.46497
С	5.76309	8.47929	1.35473	C	7.71389	8.81080	3.71166
Н	1.40492	4.81849	1.36646	H	2.72645	5.33239	4.76394
Н	6.58844	9.22289	1.35850	H	8.77442	8.97060	3.41225
LI	2.95868	8.21959	1.57511	NA	5.18333	8.60761	4.44913
LI	5.03467	5.82175	1.15020	NA	6.31786	5.69529	3.72820
0	1.90560	6.76602	1.52039	0	4.21673	6.68584	4.49208
0	3.39521	5.11365	1.22426	0	4.45807	4.49322	4.13164
0	4.59817	8.92765	1.50094	0	7.04288	9.80969	4.04493
0	6.08782	7.27531	1.20475	0	7.28445	7.61702	3.68504

Atom	Х	Y	Z	Atom	Х	Y	Z
C	-2.33080	0.25480	-0.04289	C	5.73244	7.84716	5.63654
C	2.33725	-0.24308	0.04678	C	5.74354	13.60762	2.46909
C	-3.74841	-0.25461	-0.07101	C	5.98095	6.36019	5.77916
C	3.75490	0.26624	0.07510	C	5.99209	12.12071	2.61212
Н	-3.89132	-0.89586	-0.95251	Н	4.68734	13.83091	2.67865
Н	3.89790	0.90697	0.95698	Н	5.38377	5.81641	5.03204
Н	-3.92839	-0.88289	0.81330	Н	5.71942	6.00750	6.78219
Н	3.93490	0.89501	-0.80886	Н	6.00594	13.96027	1.46627
Н	-4.46376	0.57320	-0.09072	Н	6.33984	14.15160	3.21676
Н	4.47018	-0.56163	0.09436	Н	7.03688	6.13668	5.56854
LI	-0.25911	1.28762	0.00982	NA	5.24366	10.44181	5.49614
LI	0.26552	-1.27609	-0.00603	NA	6.48092	9.52614	2.75262
0	-1.38463	-0.60303	-0.03346	0	5.22955	8.48374	6.59299
0	1.39112	0.61477	0.03735	0	5.67533	11.57720	3.72301
0	-2.10907	1.49162	-0.02781	0	6.04916	8.39090	4.52573
0	2.11547	-1.47989	0.03159	0	6.49501	11.48395	1.65579

Table S3. DFT/B3PW91/Sadlej optimized atomic coordinates (in Å) for CH_3CO_2Li and CH_3CO_2Na molecular dimers.

Table S4. DFT/B3PW91/Sadlej optimized atomic coordinates (in Å) for CH_3OCO_2Li and CH_3OCO_2Na molecular dimers.

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	2.22698	-0.68353	-0.05408	C	10.9970	3.9241	7.3136
С	-2.23700	0.68761	0.05174	C	12.8625	2.6977	8.0552
С	4.42101	-1.50939	-0.10505	C	5.1496	7.9921	4.9451
С	-4.43056	1.51475	0.10273	C	7.0157	6.7655	5.6848
Н	4.24145	-2.14962	-0.97915	Н	12.3564	2.3218	8.9556
Н	-4.25056	2.15497	0.97677	Н	12.7764	1.9357	7.2675
Н	4.30082	-2.11436	0.80372	Н	13.9193	2.8901	8.2740
Н	-4.31000	2.11957	-0.80611	Н	4.0925	7.7998	4.7273
Н	5.43171	-1.08953	-0.14686	Н	5.2365	8.7538	5.7329
Н	-5.44152	1.09552	0.14461	Н	5.6547	8.3684	4.0443
LI	0.03331	-1.27843	0.01663	NA	8.4521	3.8550	6.7006
LI	-0.04324	1.28235	-0.01903	NA	9.5606	6.8341	6.2968
0	1.45006	0.31857	-0.04667	0	10.3471	2.8574	7.3974
0	-1.46065	-0.31493	0.04436	0	10.5330	5.0407	6.9440
0	1.82870	-1.87231	-0.02409	0	12.3144	3.9393	7.6350
0	-1.83817	1.87623	0.02164	0	5.6981	6.7503	5.3643
0	3.53500	-0.39348	-0.09734	0	7.4799	5.6487	6.0537
0	-3.54522	0.39831	0.09508	0	7.6655	7.8322	5.6011

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-2.69096	-0.57842	0.00037	С	-2.92230	-0.54435	-0.03511
C	2.69099	0.57846	-0.00039	С	2.92439	0.54496	0.03572
Н	3.00485	1.16989	-0.88746	Н	-3.20941	-1.39482	-0.69872
Н	-3.00504	-1.16917	0.88780	Н	3.21188	1.39148	0.70420
Н	3.00519	1.16965	0.88670	Н	-3.33909	-0.80009	0.96846
Н	-3.00522	-1.17016	-0.88634	Н	3.34008	0.80694	-0.96670
Н	-3.33118	0.32889	-0.00008	Н	-3.53283	0.31884	-0.39135
Н	3.33138	-0.32874	-0.00064	Н	3.53560	-0.32017	0.38606
LI	-0.23622	1.09314	0.00074	NA	-0.25128	1.35948	-0.27483
LI	0.23625	-1.09335	-0.00085	NA	0.25340	-1.35913	0.27546
0	-1.34115	-0.28694	0.00007	0	-1.56980	-0.29300	-0.01877
0	1.34122	0.28672	-0.00018	0	1.57195	0.29328	0.01924

Table S5. DFT/B3PW91/Sadlej optimized atomic coordinates (in Å) for CH_3OLi and CH_3ONa molecular dimers.

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-0.07039	3.74129	3.43271	C	-0.32365	5.02353	1.44679
C	0.30656	-0.40609	0.53411	C	0.35511	-0.05151	-0.54693
C	-1.30147	3.34239	4.32944	C	-1.77023	5.47570	0.96471
C	1.53782	-0.00712	-0.36244	C	1.80171	-0.50368	-0.06492
LI	-0.50042	5.58810	4.99927	NA	-0.70111	7.66622	2.48796
LI	0.73720	-2.25299	-1.03212	NA	0.73257	-2.69411	-1.58828
LI	-0.92237	1.34615	2.74072	NA	-1.48263	2.72365	-0.15111
LI	1.15815	1.98912	1.22600	NA	1.51408	2.24831	1.05104
0	-0.04935	0.44049	1.38978	0	-0.01352	1.09811	-0.20306
0	-0.21453	-1.51722	0.32994	0	0.04497	3.87387	1.10303
0	0.28524	2.89476	2.57690	0	-0.32128	-0.84869	-1.22709
0	0.45088	4.85233	3.63690	0	0.35273	5.82075	2.12692
0	-1.63654	4.19466	5.18393	0	-2.14518	6.61684	1.31739
0	-1.81514	2.23442	4.10592	0	2.17667	-1.64480	-0.41766
0	1.87319	-0.85944	-1.21676	0	-2.40973	4.66144	0.27776
0	2.05134	1.10092	-0.13891	0	2.44122	0.31056	0.62204

Table S6. DFT/PBE0/TZVPPD optimized atomic coordinates (in Å) for $Li_2C_2O_4$ and $Na_2C_2O_4$ molecular dimers.

Table S7. DFT/PBE0/TZVPPD optimized atomic coordinates (in Å) for HCO_2Li and HCO_2Na molecular dimers.

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	2.21120	5.59969	1.38428	C	3.76395	5.50951	4.35248
С	5.78162	8.44322	1.34136	C	7.73710	8.79369	3.82428
Н	1.37970	4.87283	1.38371	Н	2.68337	5.36682	4.54584
Н	6.61313	9.17007	1.34197	Н	8.81768	8.93638	3.63089
LI	2.97741	8.24126	1.59990	NA	5.15849	8.61947	4.29884
LI	5.01543	5.80163	1.12570	NA	6.34256	5.68372	3.87802
0	1.90714	6.80059	1.54564	0	4.18846	6.69953	4.35550
0	3.36116	5.13615	1.22332	0	4.45788	4.50056	4.15168
0	4.63167	8.90677	1.50232	0	7.04315	9.80264	4.02502
0	6.08567	7.24232	1.17997	0	7.31260	7.60366	3.82136

Atom	Х	Y	Z	Atom	Х	Y	Z
C	-2.33899	0.20913	-0.07161	С	5.64091	7.86586	5.63523
C	2.33925	-0.20583	0.07279	С	5.86268	6.38069	5.79766
C	-3.74211	-0.32741	-0.11695	С	6.07958	12.09867	2.61072
C	3.74248	0.33048	0.11751	С	5.85796	13.58386	2.44838
Н	3.84347	1.02809	0.94985	Н	6.91331	6.14347	5.62267
Η	-3.84591	-1.01321	-0.95881	Н	5.56559	6.04657	6.78884
Н	-3.93321	-0.90354	0.79053	Н	5.28331	5.84546	5.04255
Н	3.93774	0.89332	-0.79749	Н	6.15561	13.91813	1.45743
Н	4.46525	-0.47594	0.21119	Н	6.43687	14.11897	3.20392
Н	-4.46578	0.47962	-0.19724	Н	4.80722	13.82107	2.62278
LI	-0.27955	1.27933	0.01810	NA	5.18631	10.45189	5.46416
LI	0.27982	-1.27604	-0.01759	NA	6.53390	9.51259	2.78166
0	-1.38228	-0.62851	-0.06012	0	6.01206	8.39421	4.54038
0	1.38262	0.63187	0.06051	0	5.10718	8.50985	6.56003
0	-2.14007	1.44164	-0.04020	0	6.61347	11.45472	1.68598
0	2.14026	-1.43835	0.04169	0	5.70811	11.57024	3.70544

Table S8. DFT/PBE0/TZVPPD optimized atomic coordinates (in Å) for CH_3CO_2Li and CH_3CO_2Na molecular dimers.

Table S9. DFT/PBE0/TZVPPD optimized atomic coordinates (in Å) for CH_3OCO_2Li and CH_3OCO_2Na molecular dimers.

Atom	Х	Y	Z	Atom	X	Y	Z
С	2.21515	-0.71963	0.00001	C	11.01804	3.93032	7.30507
С	-2.21521	0.71953	-0.00002	C	12.90458	2.73873	8.03471
С	4.39298	-1.57899	0.00007	C	5.12715	7.92874	4.97676
С	-4.39304	1.57893	0.00001	C	7.01380	6.73701	5.70586
Н	4.23496	-2.19271	0.88716	Н	12.40626	2.34306	8.92076
Н	4.23496	-2.19284	-0.88692	Н	12.84270	1.99454	7.23943
Н	-4.23499	2.19276	0.88701	Н	13.94688	2.95799	8.25960
Н	-4.23505	2.19266	-0.88707	Н	4.08481	7.70953	4.75200
Н	5.40171	-1.17194	0.00004	Н	5.18915	8.67276	5.77219
Н	-5.40177	1.17188	0.00006	Н	5.62532	8.32461	4.09072
LI	0.01172	-1.29746	0.00006	NA	8.49000	3.83788	6.68313
LI	-0.01176	1.29737	-0.00012	NA	9.54190	6.82938	6.32754
0	1.46053	0.29224	-0.00007	0	10.39318	2.85572	7.37236
0	-1.46061	-0.29237	0.00002	0	10.53366	5.03723	6.94935
0	1.80051	-1.89628	0.00010	0	12.32700	3.96818	7.62985
0	-1.80054	1.89617	-0.00009	0	5.70479	6.69920	5.38126
0	3.52349	-0.45489	-0.00002	0	7.49824	5.63002	6.06125
0	-3.52355	0.45482	0.00004	0	7.63863	7.81164	5.63873

Atom	Х	Y	Z	Atom	Х	Y	Z
С	2.68889	0.59921	-0.05115	С	-2.89805	-0.63556	-0.12715
С	-2.68896	-0.59913	0.05134	С	2.89878	0.62919	0.13780
Н	2.92714	1.44082	-0.72244	Н	3.11127	1.58954	0.64620
Н	-2.92720	-1.44064	0.72275	Н	-3.12281	-1.50219	-0.77846
Н	3.07461	0.87750	0.94376	Н	-3.34269	-0.88006	0.85638
Н	-3.07469	-0.87758	-0.94353	Н	3.37876	0.70897	-0.85623
Н	3.30671	-0.24682	-0.39497	Н	3.48452	-0.12845	0.69312
Н	-3.30680	0.24695	0.39503	Н	-3.50718	0.19581	-0.53137
LI	0.24467	-1.08682	0.03008	NA	-0.30494	1.34605	0.29440
LI	-0.24476	1.08692	-0.02994	NA	0.30575	-1.35397	-0.28126
0	1.34224	0.30096	-0.03120	0	-1.55707	-0.34238	-0.05620
0	-1.34232	-0.30085	0.03134	0	1.55791	0.33509	0.06867

Table S10. DFT/PBE0/TZVPPD optimized atomic coordinates (in Å) for CH₃OLi and CH₃ONa molecular dimers.

		$Li_2C_2O_4$		Na ₂ C ₂ O ₄				
(cm ⁻¹)	(Ă ⁴ /amu)	Assignment	(cm ⁻¹)	(Ă ⁴ /amu)	Assignment			
1694	0	v(C=O)	1663	2	v(C=O)			
1678	0	v(C=O)	1655	0	v(C=O)			
1647	23	v(C=O)	1624	22	v(C=O)			
1635	0	v(C=O)	1610	0	v(C=O)			
1428	62	v(C-C) + v(C-O)	1411	83	v(C-C) + v(C-O)			
1427	0	v(C-C) + v(C-O)	1411	0	v(C-C) + v(C-O)			
1321	1	v(OCO)	1315	1	v(OCO)			
1319	0	v(OCO)	1313	0	v(OCO)			
877	0	$\delta(OCO) + \nu(C-C)$	855	1	$\delta(OCO) + \nu(C-C)$			
871	15	$\delta(OCO) + \nu(C-C)$	855	17	$\delta(OCO) + \nu(C-C)$			
851	0	$\delta(OCO)$ out of plane	850	0	$\delta(OCO)$ out of plane			
850	0	$\delta(COC)$ out of plane	850	0	$\delta(OCO)$ out of plane			
803	0	δ(OCO)	764	0	δ(OCO)			
787	0	δ(OCO)	763	0	δ(OCO)			
651	0	v(O-Li)	555	4	δ(OCO)			
622	2	v(O-Li)	554	0	δ(OCO)			
592	11	$\delta(OCO) + \delta(O-Li)$	495	0	$\delta(OCO)$ out of plane			
590	0	$\delta(OCO) + \delta(O-Li)$	493	0	$\delta(OCO)$ out of plane			
577	5	$\delta(OCO) + \nu(O-Li)$	470	16	v(C-C)			
554	0	$\delta(OCO) + \nu(O-Li)$	467	0	v(C-C)			
516	2	$\delta(OCO) + \delta(O-Li)$						
516	0	$\delta(OCO) + \delta(O-Li)$						
490	0	$\delta(OCO)$ out of plane						
487	0	$\delta(OCO)$ out of plane						
449	0	v(C-C)						
433	5	v(C-C)						

Table S11. DFT/PBE0/TZVPPD vibrational frequencies for dimers of $Li_2C_2O_4$ and $Na_2C_2O_4$ and their respective band assignments. The reported vibrational frequencies were scaled by 0.9594 (see text for details).

Table S12. DFT/PBE0/TZVPPD vibrational frequencies for dimers of HCO₂Li and HCO₂Na and their respective band assignments. The reported vibrational frequencies were scaled by 0.9594 (see text for details).

		HCO ₂ Li		H	HCO ₂ Na
(cm ⁻¹)	(Ă4/amu)	Assignment	(cm ⁻¹)	(Ă4/amu)	Assignment
2868	324	ν(CH)	2836	386	ν(CH)
2866	0	ν(CH)	2835	0	ν(CH)
1643	0	v(C=O)	1609	0	v(C=O)
1601	1	v(C=O)	1608	4	v(C=O)
1377	27	v(OCO)	1360	28	v(OCO)
1376	0	v(OCO)	1356	0	v(OCO)
1346	0	δ(ΗCO)	1321	11	δ(HCO)
1346	10	δ(ΗCO)	1320	0	δ(HCO)
1046	0	τ(CH)	1038	0	τ(CH)
1046	1	τ(CH)	1038	1	τ(CH)
742	0	$\delta(OCO) + \nu(O-Li)$	760	0	δ(OCO)
740	1	δ(ΟCΟ)	759	2	δ(OCO)
690	0	v(O-Li)			
673	0	v(O-Li)			

Table S13. DFT/PBE0/TZVPPD vibrational frequencies for dimers of CH_3CO_2Li and CH_3CO_2Na and their respective band assignments. The reported vibrational frequencies were scaled by 0.9594 (see text for details).

CH ₃ CO ₂ Li				CH ₃ CO ₂ Na			
(cm ⁻¹)	(Ă ⁴ /amu)	Assignment	(cm ⁻¹)	(Ă4/amu)	Assignment		
3051	71	v(HCH ₂)	3044	104	v(HCH ₂)		
3051	31	v(HCH ₂)	3044	6	v(HCH ₂)		
3011	41	v(HCH ₂)	3006	31	v(HCH ₂)		
3011	52	v(HCH ₂)	3006	62	v(HCH ₂)		
2944	175	v(CH) ₃	2939	306	v(CH) ₃		
2944	169	v(CH) ₃	2939	30	v(CH) ₃		
1589	0	v(C=O)	1587	0	v(C=O)		
1578	8	v(C=O)	1584	11	v(C=O)		
1445	15	ν (C-O) + δ (CH ₃)	1420	19	$v(C-O) + \delta(CH_3)$		
1433	0	$v(C-O) + \delta(CH_3)$	1416	0	δ(HCH ₂)		
1411	6	$\delta(\text{HCH}_2)$	1414	8	δ(HCH ₂)		
1411	0	δ(HCH ₂)	1410	0	$v(C-O) + \delta(CH_3)$		
1394	1	$\delta(\text{HCH}_2)$	1395	14	$\delta(HCH_2)$		
1394	13	$\delta(\text{HCH}_2)$	1395	0	δ(HCH ₂)		
1313	1	$\delta(CH_3) + \nu(C-O)$	1308	2	$\delta(CH_3) + \nu(C-O)$		
1312	0	$\delta(CH_3) + \nu(C-O)$	1307	0	$\delta(CH_3) + \nu(C-O)$		
1026	0	τ(CH ₃ CO)	1023	0	τ(CH ₃ CO)		
1026	0	τ(CH ₃ CO)	1023	0	τ(CH ₃ CO)		
995	0	τ(CH ₃ CO)	985	0	$\tau(CH_3CO)$		
989	4	τ(CH ₃ CO)	984	3	τ(CH ₃ CO)		
947	0	$v(C-C) + \delta(OCO)$	921	0	ν (C-C) + δ (OCO)		
932	21	$v(C-C) + \delta(OCO)$	920	27	$v(C-C) + \delta(OCO)$		
697	0	v(O-Li)	645	2	$\delta(OCO) + \nu(C-C)$		
697	0	v(O-Li)	645	0	$\delta(OCO) + \nu(C-C)$		
649	0	$\delta(OCO) + \nu(C-C)$	600	0	δ(CCO) out of plane		
646	3	$\delta(OCO) + \nu(C-C)$	600	2	δ (CCO) out of plane		
603	0	δ(CCO) out of plane	452	0	$\delta(CCO)$ in plane		
601	2	$\delta(CCO)$ out of plane	443	0	δ(CCO) in plane		
450	0	$\delta(CCO)$ in plane					
441	0	$\delta(OCO)$ in plane					

Table S14. DFT/PBE0/TZVPPD vibrational frequencies for dimers of CH_3OCO_2Li and CH_3OCO_2Na and their respective band assignments. The reported vibrational frequencies were scaled by 0.9594 (see text for details).

CH ₃ OCO ₂ Li			CH ₃ OCO ₂ Na				
(cm ⁻¹)	(Ă ⁴ /amu)	Assignment	(cm ⁻¹)	(Ă4/amu)	Assignment		
3041	92	ν(HCH ₂)	3030	98	v(HCH ₂)		
3041	41	v(HCH ₂)	3030	42	v(HCH ₂)		
3015	3	v(HCH ₂)	3004	0	v(HCH ₂)		
3015	74	v(HCH ₂)	3004	84	v(HCH ₂)		
2940	334	v(CH) ₃	2933	346	v(CH) ₃		
2940	4	v(CH) ₃	2933	1	v(CH) ₃		
1622	0	ν(C=O)	1628	6	ν(C=O)		
1615	4	ν(C=O)	1627	0	v(C=O)		
1463	9	ν (C-O) + δ (CH ₃)	1440	10	ν (C-O) + δ (CH ₃)		
1452	0	$v(C-O) + \delta(CH_3)$	1438	0	ν (C-O) + δ (CH ₃)		
1434	6	$\delta(\text{HCH}_2)$	1434	5	δ(HCH ₂)		
1433	0	δ(HCH ₂)	1431	0	δ(HCH ₂)		
1421	1	δ(HCH ₂)	1418	1	δ(HCH ₂)		
1421	7	δ(HCH ₂)	1418	7	δ(HCH ₂)		
1369	4	$v(C-O) + \delta(CH_3)$	1348	8	$v(C-O) + \delta(CH_3)$		
1357	0	$v(C-O) + \delta(CH_3)$	1337	0	ν (C-O) + δ (CH ₃)		
1174	0	τ(HCOC)	1168	3	τ(HCOC)		
1174	4	τ(HCOC)	1167	0	τ(HCOC)		
1133	0	τ(HCOC)	1132	4	τ(HCOC)		
1133	5	τ(HCOC)	1132	0	τ(HCOC)		
1119	0	v(C-O)	1110	1	v(C-O)		
1116	1	v(C-O)	1109	0	v(C-O)		
958	0	v(C-O)	936	0	v(C-O)		
947	29	v(C-O)	935	30	v(C-O)		
811	0	$\delta(CO_3)$ out of plane	812	0	$\delta(CO_3)$ out of plane		
810	0	$\delta(CO_3)$ out of plane	811	0	$\delta(CO_3)$ out of plane		
733	1	$\delta(O-C=O) + \nu(O-Li)$	695	1	δ(O-C=O)		
722	0	$\delta(O-C=O) + \nu(O-Li)$	695	0	δ(O-C=O)		
681	0	$\delta(COO) + \nu(O-Li)$	587	4	δ(Ο-C-Ο)		
638	1	$\delta(COO) + \nu(O-Li)$	584	0	δ(Ο-C-Ο)		
580	4	δ(Ο-C-Ο)					
561	0	δ(Ο-C-Ο)					

Table S15. DFT/PBE0/TZVPPD vibrational frequencies for dimers of CH₃OLi and CH₃ONa and their respective band assignments. The reported vibrational frequencies were scaled by 0.9594 (see text for details).

CH ₃ OLi			CH ₃ ONa			
(cm ⁻¹)	(Ă ⁴ /amu)	Assignment	(cm ⁻¹)	(Ă ⁴ /amu)	Assignment	
2847	0	v(HCH ₂)	2790	80	v(HCH ₂)	
2847	215	v(HCH ₂)	2790	241	$v(HCH_2)$	
2845	0	v(HCH ₂)	2787	19	v(HCH ₂)	
2845	239	v(HCH ₂)	2786	303	$\nu(\mathrm{HCH}_2)$	
2815	453	v(CH) ₃	2772	428	v(CH) ₃	
2811	0	v(CH) ₃	2768	0	v(CH) ₃	
1437	11	δ(HCH ₂)	1430	12	$\delta(\mathrm{HCH}_2)$	
1436	0	δ(HCH ₂)	1429	1	$\delta(\text{HCH}_2)$	
1434	16	δ(HCH ₂)	1428	7	$\delta(\mathrm{HCH}_2)$	
1434	0	δ(HCH ₂)	1427	9	$\delta(\mathrm{HCH}_2)$	
1428	10	δ(HCH ₂)	1423	9	$\delta(\text{HCH}_2)$	
1425	0	δ(HCH ₂)	1420	0	δ(HCH ₂)	
1160	1	v(C-O)	1142	0	$\tau(OCH_3)$	
1151	3	τ(OCH ₃)	1141	0	τ(OCH ₃)	
1151	0	τ(OCH ₃)	1136	0	v(C-O)	
1142	0	v(C-O)	1134	0	$\tau(OCH_3)$	
1139	0	τ(OCH ₃)	1133	0	τ(OCH ₃)	
1138	1	τ(OCH ₃)	1122	0	v(C-O)	
622	0	v(O-Li)				
591	9	δ(LiOLi)				
549	0	v(O-Li)				
527	0	δ(O-Li)				

Table S16. DFT/LDA vibrational frequencies for the crystalline structure of HCO_2Na and its respective band assignments.

HCO ₂ Na						
(cm ⁻¹)	Assignment					
2830	ν(CH)					
2829	ν(CH)					
1577	v(C=O)					
1575	v(C=O)					
1353	v(OCO)					
1351	v(OCO)					
1319	δ(HCO)					
1315	δ(HCO)					
1026	τ(CH)					
1021	τ(CH)					
771	δ(OCO)					
770	δ(OCO)					

Atom	Х	Y	Ζ	Atom	Х	Y	Z
C	-0.05093	3.86295	-0.22896	C	0.09782	4.21517	-0.11332
C	-2.78590	-1.13047	-0.04104	C	3.13872	-1.29645	0.09550
C	2.90749	-0.99471	0.12749	C	-3.16090	-1.17090	-0.12141
Н	-0.54287	4.24571	-1.14790	Н	-0.38396	4.65663	-1.01763
Н	-0.57496	4.33878	0.62662	Н	-0.39798	4.70589	0.75732
Н	0.97265	4.29425	-0.23318	Н	1.13796	4.61972	-0.11666
Н	2.76905	-2.09485	0.19331	Н	2.98531	-2.40174	0.10277
Н	-2.87652	-1.83193	-0.89704	Н	-3.29191	-1.84869	-0.99789
Н	-2.93374	-1.73763	0.87682	Н	-3.34981	-1.80552	0.77655
Н	3.51152	-0.71349	1.01581	Н	3.73905	-1.08457	1.01183
Н	3.55665	-0.82515	-0.75730	Н	3.82784	-1.10849	-0.76158
Н	-3.67004	-0.46111	-0.10508	Н	-4.03045	-0.47266	-0.16700
LI	0.08722	-1.02089	0.04662	NA	0.00578	-1.42837	-0.05186
LI	1.37558	1.43401	-0.05615	NA	-1.70692	1.59600	-0.10750
LI	-1.39468	1.32103	-0.13199	NA	1.75101	1.55647	0.00336
0	-0.05490	2.47639	-0.15632	0	0.03700	2.83631	-0.07553
0	-1.58155	-0.43961	-0.03900	0	-1.93646	-0.53339	-0.09702
0	1.70728	-0.30060	0.05319	0	1.96506	-0.57255	0.02714

Table S17. DFT/B3PW91/Sadlej optimized atomic coordinates (in Å) for CH₃OLi and CH₃ONa molecular trimers.

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	0.73961	-0.80201	2.95312	C	0.86247	-0.63694	3.15075
С	-1.67122	2.65516	0.04496	C	-1.77670	2.96998	-0.17496
С	-1.69616	-2.27936	-1.31401	C	-1.88113	-2.49194	-1.34612
С	2.63153	0.43636	-1.64517	C	2.84386	0.41173	-1.96696
Н	0.33432	-1.79421	3.24272	Н	0.43394	-1.59788	3.51940
Н	0.34812	-0.08256	3.70264	Н	0.50534	0.13659	3.86997
Н	-1.19204	3.48082	-0.52184	Н	-1.31748	3.76840	-0.80304
Н	-1.20735	-2.70053	-2.21759	Н	-1.41634	-2.99665	-2.22494
Н	1.83459	-0.85785	3.12772	Н	-1.91445	3.43272	0.83004
Н	-1.83998	3.04761	1.06973	Н	1.95956	-0.71850	3.33124
Н	-1.87443	-3.13982	-0.63538	Н	-2.07839	-3.30748	-0.61194
Н	-2.67967	2.52503	-0.40105	Н	-2.80757	2.83814	-0.57876
Н	-2.70029	-1.93796	-1.64235	Н	-2.88780	-2.16486	-1.69604
Н	2.71263	-0.24394	-2.51874	Н	2.92223	1.41259	-2.45224
Н	2.71617	1.46578	-2.05239	Н	2.92833	-0.32374	-2.80053
Н	3.54995	0.27037	-1.04384	Н	3.78525	0.29738	-1.38066
LI	-0.34973	0.38926	-1.39091	NA	-0.44623	0.44088	-1.83775
LI	0.79572	-1.27036	-0.00548	NA	0.98626	-1.51993	-0.03268
LI	0.81955	1.09347	0.63937	NA	1.05360	1.44081	0.59268
LI	-1.25053	-0.20396	0.80499	NA	-1.50852	-0.12085	0.92744
0	0.41964	-0.44945	1.65093	0	0.53896	-0.35836	1.83688
0	-0.92279	1.48817	0.03237	0	-1.04254	1.80002	-0.14651
0	-0.95228	-1.27095	-0.72085	0	-1.11531	-1.46245	-0.83392
0	1.46850	0.23986	-0.91640	0	1.70023	0.25560	-1.20833

Table S18. DFT/B3PW91/Sadlej optimized atomic coordinates (in Å) for CH₃OLi and CH₃ONa molecular tetramers.