**Electronic Supporting Information** 

## Tuning the Singlet-Triplet Energy Gap of AIE Luminogens: Crystallization-Induced Room Temperature Phosphorescence and Delay Fluorescence, Tunable Temperature Response, Highly Efficient Non-Doped Organic Light-Emitting Diodes

Jie Li, Yibin Jiang, Juan Cheng, Yilin Zhang, Huimin Su, Jacky W. Y. Lam, Herman H. Y. Sung, Kam Sing Wong, Hoi Sing Kwok, and Ben Zhong Tang\*

Dr. J. Li, Dr. J. W. Y. Lam, Dr. H. H. Y. Sung

Department of Chemistry, the Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China

Y. Jiang, Prof. H. S. Kwok

Department of Electronic and Computer Engineering, Center for Display Research, HKUST, Clear Water Bay, Kowloon, Hong Kong, China

Dr. J. Cheng, Y. Zhang, Dr. H. Su, Prof. K. S. Wong

Department of Physics, HKUST, Clear Water Bay, Kowloon, Hong Kong, China

Prof. B. Z. Tang

a) Department of Chemistry, Institute for Advanced Study, Division of Life Science, Institute of Molecular Functional Materials, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Kowloon, Hong Kong, China

b) HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, High-tech Park, Nanshan, Shenzhen 518057, China.

c) Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

E-mail: <u>tangbenz@ust.hk</u>



Fig. S1 MS spectrum of *o*-TPA-3TPE-*o*-PhCN.



Fig. S2 MS spectrum of *o*-TPA-3TPE-*p*-PhCN.



Fig. S3 MS spectrum of *p*-TPA-3TPE-*o*-PhCN.



Fig. S4 MS spectrum of *p*-TPA-3TPE-*p*-PhCN.



Fig. S5 UV absorption of D-3TPE-A molecules in THF.



Fig. S6 Normalized PL spectra of D-3TPE-A molecules in (A) THF solution and (B) film state.



**Fig. S7** Cyclic voltammogram of D-3TPE-A molecules measured in dichloromethane containing 0.1 M tetra-n-butylammonium hexafluorophosphate. Scan rate: 100 mV/s.

|                                                                                                                                            | $\lambda_{abs}$ (nm) | $\lambda_{\rm em}$ (nm) |                   | $\Phi_F(\%)$ | $T_{\rm g}/T_{\rm d}$ | HOMO/LUMO   | $E_{\rm opt}$ |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------------------|--------------|-----------------------|-------------|---------------|--|
|                                                                                                                                            | Soln                 | Soln                    | Film ( <i>t</i> ) | Powder       | (°C)                  | (eV)        | (eV)          |  |
| o-TPA-3TPE-o-PhCN                                                                                                                          | 306                  | 402, 464                | 459 (7.2 ns)      | 23           | 68/340                | -4.56/-1.28 | 3.28          |  |
| o-TPA-3TPE-p-PhCN                                                                                                                          | 324                  | 520                     | 474 (3.7 ns)      | 32           | 85/388                | -4.59/-1.38 | 3.21          |  |
| p-TPA-3TPE-o-PhCN                                                                                                                          | 302, 348             | 488                     | 459 (6.2 ns)      | 40           | 64/350                | -4.62/-1.50 | 3.12          |  |
| p-TPA-3TPE-p-PhCN                                                                                                                          | 334                  | 508                     | 490 (5.7 ns)      | 42           | 73/356                | -4.65/-1.73 | 2.92          |  |
| Abbreviations: Soln = solution (10 $\mu$ M in THF), $\lambda_{em}$ = PL maximum wavelength, $\Phi_F$ = absolute fluorescence quantum yield |                      |                         |                   |              |                       |             |               |  |
| measured using an integrating sphere, $T_{\rm g}$ = glass transition temperature, $T_{\rm d}$ = onset decomposition temperature, HOMO is   |                      |                         |                   |              |                       |             |               |  |
| estimated from the onset oxidation potential in cyclic voltammogram, LUMO is obtained by subtraction of the optical band                   |                      |                         |                   |              |                       |             |               |  |
| gap from the HOMO energy level, $E_{opt}$ = energy band gap determined from the onset of absorption spectra.                               |                      |                         |                   |              |                       |             |               |  |

Table S1. Optical and thermal properties of D-3TPE-A molecules



**Fig. S8** PL spectra of (A) *o*-TPA-3TPE-*o*-PhCN, (C) *o*-TPA-3TPE-*p*-PhCN, and (E) *p*-TPA-3TPE-*o*-PhCN in THF/water mixtures with different water fractions at room temperature, excitation wavelength: 305, 340, and 350 nm, respectively. Dye concentration: 10  $\mu$ M. Plots of PL intensity and emission wavelength versus water fraction of (B) *o*-TPA-3TPE-*o*-PhCN, (D) *o*-TPA-3TPE-*p*-PhCN, and (F) *p*-TPA-3TPE-*o*-PhCN. LE: local excited state emission; ICT: intramolecular charge transfer emission.



**Fig. S9** Normalized PL spectra of (A) *o*-TPA-3TPE-*o*-PhCN, (B) *o*-TPA-3TPE-*p*-PhCN, (C) *p*-TPA-3TPE-*o*-PhCN and (D) *p*-TPA-3TPE-*p*-PhCN in different solvents. Concentration: 10 μM.



**Fig. S10** Emission spectra with different delay times of crystals of (A) *o*-TPA-3TPE-*o*-PhCN, (B) *o*-TPA-3TPE-*p*-PhCN and (C) *p*-TPA-3TPE-*p*-PhCN at room temperature. (A) and (B) were obtained by time window method using a Perkin-Elmer LS 55 spectrofluorometer, (C) was measured via a time-resolved fluorescence spectrometer with the time resolution of 1  $\mu$ s.



Fig. S11. Single crystal structure of *o*-TPA-3TPE-*o*-PhCN.



**Fig. S12** Powder XRD patterns for microcrystals of *o*-TPA-3TPE-*p*-PhCN and *p*-TPA-3TPE-*p*-PhCN at room temperature, respectively.

**Table S2.** Crystal data and structure refinement for *o*-TPA-3TPE-*o*-PhCN.

| Identification code                      | o-TPA-3TPE-o-PhCN                           |                         |  |  |
|------------------------------------------|---------------------------------------------|-------------------------|--|--|
| Empirical formula                        | C45 H32 N2                                  |                         |  |  |
| Formula weight                           | 600.73                                      |                         |  |  |
| Temperature                              | 173.0(4) K                                  |                         |  |  |
| Wavelength                               | 1.5418 Å                                    |                         |  |  |
| Crystal system                           | Triclinic                                   |                         |  |  |
| Space group                              | P-1                                         |                         |  |  |
| Unit cell dimensions                     | a = 8.4790(3) Å                             | $\alpha = 68.455(6)$ °. |  |  |
|                                          | b = 12.9948(8) Å                            | $\beta = 84.347(4)$ °.  |  |  |
|                                          | c = 16.2781(11) Å                           | $\gamma = 73.048(4)$ °. |  |  |
| Volume                                   | 1595.69(16) Å <sup>3</sup>                  |                         |  |  |
| Z                                        | 2                                           |                         |  |  |
| Density (calculated)                     | 1.250 Mg/m <sup>3</sup>                     |                         |  |  |
| Absorption coefficient                   | 0.553 mm <sup>-1</sup>                      |                         |  |  |
| F(000)                                   | 632                                         |                         |  |  |
| Crystal size                             | $0.40 \ge 0.18 \ge 0.05 \text{ mm}^3$       |                         |  |  |
| Theta range for data collection          | 3.80 to 66.99 °.                            |                         |  |  |
| Index ranges                             | -10<=h<=6, -14<=k<=15, -19<=l<=19           |                         |  |  |
| Reflections collected                    | 9193                                        |                         |  |  |
| Independent reflections                  | 5563 [R(int) = 0.0333]                      |                         |  |  |
| Completeness to theta = 66.50 $^{\circ}$ | 98.05 %                                     |                         |  |  |
| Absorption correction                    | Semi-empirical from equivalents             |                         |  |  |
| Max. and min. transmission               | 1.00000 and 0.71036                         |                         |  |  |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |                         |  |  |
| Data / restraints / parameters           | 5563 / 0 / 424                              |                         |  |  |
| Goodness-of-fit on $F^2$                 | 1.005                                       |                         |  |  |
| Final R indices [I>2sigma(I)]            | R1 = 0.0411, $wR2 = 0.1068$                 |                         |  |  |
| R indices (all data)                     | R1 = 0.0469, wR2 = 0.1117                   |                         |  |  |
| Largest diff. peak and hole              | 0.198 and -0.172 e.Å <sup>-3</sup>          |                         |  |  |

|                                                          | $\lambda$ er              | <sub>n</sub> (nm) | λ          | $\Delta E_{\rm ST}$ |                       |  |  |  |
|----------------------------------------------------------|---------------------------|-------------------|------------|---------------------|-----------------------|--|--|--|
|                                                          | (n-hexa                   | ne at 77 K)       | (Cry       | (eV)                |                       |  |  |  |
| _                                                        | FL                        | Delayed           | FL         | Delayed (r)         |                       |  |  |  |
| o-TPA-3TPE-o-PhCN                                        | 410                       | 510               | 422        | 503 (105 µs)        | 0.59                  |  |  |  |
| o-TPA-3TPE-p-PhCN                                        | 430                       | 510               | 452        | 506 (86 µs)         | 0.45                  |  |  |  |
| p-TPA-3TPE-o-PhCN                                        | 420                       | 495               |            |                     | 0.45                  |  |  |  |
| p-TPA-3TPE-p-PhCN                                        | 456                       | 495               | 493        | 495 (14 µs)         | 0.21                  |  |  |  |
| $\lambda_{\rm em}$ = emission waveler                    | ngth, $\Delta E_{\rm ST}$ | is estimated from | the energy | gap between         | the $\lambda_{em}$ of |  |  |  |
| fluorescence (FL) and phosphorescence (delayed) at 77 K. |                           |                   |            |                     |                       |  |  |  |

Table S3. Optical properties of D-3TPE-A molecules in *n*-hexane at 77 K and in crystals at RT



Fig. S13 Emission spectra of D-3TPE-A molecules in the thin film at different temperatures.



**Fig. S14** (A) EL spectra and (B) change in luminance and current density with the applied bias of the EL devices based on D-3TPE-A molecules. The arrows indicate the attribution of the curves to the coresponding ordinates.



**Fig. S15** Plots of (A) power efficiency *versus* voltage and (B) external quantum efficiency and current efficiency *versus* current density of the EL devices based on D-3TPE-A molecules. The arrows indicate the attribution of the curves to the coresponding ordinates.

## **Synthetic Procedures**

**Preparation of o- or p-Triphenylaminobenzophenone (o- or p-TPABP).** Into a 150 mL two-necked round-bottom flask with a reflux condenser were placed 0.16 g (0.14 mmol) of  $Pd(PPh_3)_4$ , 2.40 g (8.3 mmol) of 4-(diphenylamino)phenylboronic acid and 1.81 g (6.92 mmol) of *o*,-bromobenzophenone (or *p*-bromobenzophenone). The flask was evacuated under vacuum and purged in dry nitrogen for three times. 60 mL of THF was then added, followed by the addition of 8 mL of saturated K<sub>2</sub>CO<sub>3</sub> aqueous solution. The mixture was refluxed for 24 h, and then extracted with dichloromethane three times. The organic layers were combined and washed with brine twice. After solvent evaporation under reduced pressure, the crude product was purified on a silica-gel column using dichloromethane/hexane mixture (1:10 v/v) as eluent.

*Characterization data of o-TPABP*: A yellow solid was obtained in 70% yield. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>), δ (ppm): 7.65 (m, 1H), 7.55 (m, 4H), 7.44 (d, 2H), 7.34 (t, 2H), 7.24 (t, 4H), 7.07 (d, 2H), 6.99 (t, 2H), 6.75 (d, 6H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>), δ (ppm): 197.66, 146.42, 146.06, 139.43, 137.81, 136.57, 133.77, 132.20, 130.38, 129.53, 128.91, 128.77, 128.72, 128.39, 127.68, 126.80, 123.28, 122.90, 122.36. HRMS (MALDI-TOF): *m/z* 425.1784 (M+, calcd 425.1780).

*Characterization data of p-TPABP*: A yellow solid was obtained in 86% yield. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>), δ (ppm): 7.79 (t, 4H), 7.74 (d, 2H), 7.67 (m, 3H), 7.56 (t, 2H), 7.32 (t, 4H), 7.10–7.02 (m, 8H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>), δ (ppm): 195.68, 148.15, 147.27, 144.15, 137.76, 135.50, 133.00, 132.56, 131.00, 130.16, 129.97, 129.03, 128.46, 126.50, 125.05, 124.11, 123.04. HRMS (MALDI-TOF): *m/z* 425.1770 (M+, calcd 425.1780).

*Preparation of diethyl 2- or 4-bromobenzylphosphonate*. Into a 15 mL Schlenk tube was placed 3 g (12 mmol) of 2 or 4-benzylbromide. The flask was evacuated under vacuum and purged with dry nitrogen for three times. 3 mL of triethyl phosphite was added, then the mixture was refluxed overnight. The solvent was evaporated under reduced pressure and the crude product was used for further reaction without purification.

**Preparation of o or p-TPA-3TPE-o or p-Br**. Into a 25 mL Schlenk tube were placed 0.2 g (1.8 mmol) of *t*-BuOK, 0.5 g (1.2 mmol) of *o* or *p*-TPABP. The flask was evacuated under vacuum and purged with dry nitrogen for three times. Then 0.38 g (1.5 mmol) of diethyl 2 or

4-bromobenzylphosphonate in 10 mL of THF was added, followed by stirring at 50  $^{\circ}$ C overnight. The mixture was quenched by 1 M NH<sub>4</sub>Cl aqueous solution, and then extracted with dichloromethane three times. The organic layers were combined and washed with brine twice. After solvent evaporation under reduced pressure, the crude product was purified on a silica-gel column using hexane as eluent.

*Characterization data of o-TPA-3TPE-o-Br*: A white solid was obtained in 79% yield. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>), δ (ppm): 7.44 (t, 2H), 7.21 (m, 7H), 7.12–6.96 (m, 9H), 6.84 (d, 4H), 6.79 (t, 3H), 6.66 (d, 2H), 6.59 (s, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ (TMS, ppm): 147.64, 146.23, 144.53, 142.45, 140.95, 139.34, 138.44, 136.35, 132.67, 131.31, 130.81, 130.64, 130.31, 130.05, 129.86, 129.34, 128.74, 127.97, 127.75, 127.69, 127.39, 124.54, 124.22, 124.02, 123.75, 123.12. HRMS (MALDI-TOF): *m/z* 579.1430 (M+2, calcd 577.1405).

*Characterization data of o-TPA-3TPE-p-Br*: A yellow solid was obtained in 81% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ (TMS, ppm): 7.43–7.38 (m, 2H), 7.37–7.31 (m, 3H), 7.24–7.19 (m, 6H), 7.17–7.08 (m, 4H), 7.01–6.90 (m, 6H), 6.86–6.79 (m, 6H), 6.70 (d, *J* = 8.4 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ (TMS, ppm): 147.64, 147.57, 146.33, 146.15, 143.40, 142.86, 142.64, 141.02, 139.90, 138.26, 136.76, 136.55, 135.76, 131.43, 131.35, 131.28, 131.17, 130.55, 130.34, 130.07, 129.98, 129.85, 129.14, 128.46, 128.37, 127.81, 127.66, 127.34, 124.65, 124.16, 124.06, 123.76, 123.73, 123.12, 120.41. HRMS (MALDI-TOF): *m/z* 579.1393 (M+2, calcd 577.1405).

*Characterization data of p-TPA-3TPE-o-Br*: A yellow solid was obtained in 95% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ (TMS, ppm): 7.58–7.55 (m, 2H), 7.52–7.47 (m, 3H), 7.44–7.41 (m, 2H), 7.36 (m, 2H), 7.33–7.26 (m, 6H), 7.20–7.11 (m, 8H), 7.07–7.04 (m, 2H), 6.95–6.92 (m, 2H), 6.85 (d, *J* = 8.4 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ (TMS, ppm): 147.59, 147.25, 144.06, 143.95, 142.84, 141.10, 140.10, 139.57, 139.40, 138.12, 138.03, 134.37, 134.32, 132.40, 131.40, 131.35, 131.12, 130.65, 129.25, 128.43, 128.28, 128.23, 128.06, 128.01, 127.88, 127.60, 127.50, 127.48, 127.11, 126.63, 126.51, 126.37, 126.24, 125.16, 124.47, 123.88, 123.71, 122.97, 122.92. HRMS (MALDI-TOF): *m/z* 579.1398 (M+2, calcd 577.1405).

*Characterization data of p-TPA-3TPE-p-Br*: A yellow solid was obtained in 92% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ (TMS, ppm): 7.65 (m, 1H), 7.55 (m, 4H), 7.44 (d, 2H), 7.34 (t, 2H), 7.24 (t, 4H), 7.07 (d, 2H), 6.99 (t, 2H), 6.75 (d, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ (TMS, ppm): 147.62,

147.35, 147.29, 143.16, 142.98, 141.38, 139.89, 139.66, 138.38, 136.39, 136.33, 134.31, 131.13, 131.08, 131.04, 130.77, 130.25, 129.28, 128.81, 128.26, 127.90, 127.77, 127.72, 127.68, 127.57, 126.87, 126.73, 126.44, 126.37, 124.48, 124.41, 123.93, 123.72, 123.00, 122.96, 120.54. HRMS (MALDI-TOF): *m/z* 579.1387 (M+2, calcd 577.1405).

**Preparation of o or p-TPA-3TPE-o or p-PhCN**. Into a 25 mL Schlenk tube were placed 100 mg (0.17 mmol) of o or p-TPA-3TPE-o or p-Br, 38 mg (0.26 mmol) of 4-cyanophenylboronic acid, and 10 mg (0.05 mmol) of Pd(PPh<sub>3</sub>)<sub>4</sub>. The flask was evacuated under vacuum and purged with dry nitrogen for three times. 5 mL of distilled THF was then added, followed by addition of 1 mL of saturated  $K_2CO_3$  aqueous solution. The mixture was refluxed for 24 h. The reaction was quenched with saturated NH<sub>4</sub>Cl solution, and then extracted with dichloromethane three times. The organic layers were combined and washed with brine twice. The solvent was evaporated under reduced pressure and the crude product was purified on a silica-gel column using ethyl acetate/hexane mixture (1:10 v/v) as eluent.

*Characterization data of o-TPA-3TPE-o-PhCN*: A white solid was obtained in 85% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ (TMS, ppm): 7.58 (t, 2H), 7.42–7.38 (m, 5H), 7.28–7.15 (m, 9H), 7.01–6.95 (m, 11H), 6.84 (d, 2H), 6.62 (d, 2H), 6.54 (s, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ (TMS, ppm): 147.46, 146.18, 144.34, 142.87, 141.22, 139.51, 139.43, 136.28, 136.23, 131.68, 130.78, 130.62, 130.04, 129.87, 129.83, 129.44, 129.08, 129.04, 128.07, 127.95, 127.84, 127.30, 127.21, 126.97, 126.39, 124.25, 123.77, 123.60, 122.44, 118.87, 110.44. HRMS (MALDI-TOF): *m/z* 600.2568 (M+, calcd 600.2565).

*Characterization data of o-TPA-3TPE-p-PhCN*: A yellow solid was obtained in 90% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ (TMS, ppm): 7.71–7.60 (m, 4H), 7.46–7.33 (m, 6H), 7.26–7.09 (m, 12H), 7.00–6.88 (m, 10H), 6.79 (d, *J* = 8.4 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ (TMS, ppm): 147.70, 146.31, 146.16, 145.06, 145.03, 144.14, 143.36, 143.20, 142.95, 141.49, 141.22, 139.95, 138.50, 138.14, 138.01, 136.97, 136.39, 135.67, 132.54, 132.53, 131.38, 130.97, 130.30, 130.24, 130.17, 130.07, 130.00, 129.90, 129.79, 129.41, 129.02, 129.00, 128.28, 127.90, 127.85, 127.66, 127.49, 127.29, 126.94, 126.85, 126.71, 126.66, 123.84, 123.78, 123.75, 122.43, 122.38, 118.94, 110.64. HRMS (MALDI-TOF): *m/z* 600.2566 (M+, calcd 600.2565).

*Characterization data of p-TPA-3TPE-o-PhCN*: A yellow solid was obtained in 91% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ (TMS, ppm): 7.59 (m, 2H), 7.48–7.38 (m, 6H), 7.31–7.20 (m, 12H), 7.15–7.11 (m, 7H), 7.04 (m, 3H), 6.97 (d, *J* = 8 Hz, 1H), 6.80 and 6.75 (s, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ (TMS, ppm):147.59, 147.34, 147.29, 146.07, 143.74, 143.55, 143.06, 141.32, 140.05, 139.58, 139.42, 139.30, 138.04, 136.04, 135.93, 134.25, 131.86, 130.92, 130.86, 130.54, 130.02, 129.96, 129.72, 129.66, 129.28, 128.32, 128.23, 128.12, 127.99, 127.82, 127.57, 127.48, 127.33, 127.28, 127.22, 126.61, 126.34, 126.27, 126.14, 124.49, 124.44, 123.84, 123.67, 123.00, 118.99, 110.42, 110.31. HRMS (MALDI-TOF): *m/z* 600.2556 (M+, calcd 600.2565).

*Characterization data of p-TPA-3TPE-p-PhCN*: A yellow solid was obtained in 91% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ (TMS, ppm): 7.57–7.47 (m, 4H), 7.37–7.32 (m, 5H), 7.30–7.21 (m, 8H), 7.17–7.12 (m, 6H), 7.06 (m, 3H), 6.95 (m, 1H), 6.88 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ (TMS, ppm): 147.58, 147.31, 145.01, 143.45, 143.27, 143.18, 141.41, 140.12, 139.67, 138.63, 138.03, 136.97, 134.25, 132.54, 130.81, 130.30, 130.22, 129.28, 128.84, 128.28, 127.94, 127.82, 127.75, 127.69, 127.57, 127.31, 127.22, 126.74, 126.69, 126.37, 124.49, 124.42, 123.87, 123.70, 123.01, 118.96, 110.67. HRMS (MALDI-TOF): *m/z* 600.2572 (M+, calcd 600.2565).