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I. Classical normal form theory3’

37 T. Komatsuzaki and R. S. Berry, Adv. Chem. Phys., 2002, 123, 79-152.

Here we describe the essence of the review?’ by Komatsuzaki and Berry about the
classical NFT that is necessary for the explanation of the analysis and calculations of our
present paper. The theory described here is also called as Lie canonical perturbation theory
(LCPT). LCPT is a convenient method to perform canonical transformation by perturbative
calculation and obtain the Hamiltonian in normal form and the corresponding dynamical
variables. Here we give a brief description of LCPT.

By means of LCPT, one can transform the original Hamiltonian, H, and dynamical
variables, J, ©, p, and q, into new ones, H,J,0, p, and q, respectively. Moreover, if

the generating function W used for LCPT is properly chosen, we can obtain the new

Hamiltonian in normal form, namely;

H(J,G))K)I?(j) = iaﬁ(i) . (B1)

i=0

Here, the Hamiltonian in normal form means that it is represented only by J .

I-1. Definitions and assumptions

For a parameter &, Lie transformation, T, is defined as follows:

Tz=exple, } . (B2)



where z represents a vector whose components are the dynamical variables p and q and iW
is defined as
Lyz= .z}, (B3)
where W is a polynomial of p and q and { } is the Poisson bracket defined by
{W’Z}Eﬁ(a_wa_z_a_za_w). (B4)
The inverse transformation is defined as follows.
T'z= exp kLAW} (B5)
It is proven that the Lie transformation and the inverse transformation, Eqgs. (B2) and (B5),
are canonical transformation if p and q are canonical. If the right hand sides of Egs. (B2)

A ~

and (BS) are expressed as the Taylor expansions with respect to & 7 and 7 are

represented by
Foy Gy (B6)
Py !
and
.y L) i (B7)

On the basis of Eq. (B6), Eq. (B8) can be proven. See ref 37.

f(2) = f(2) , (BS)

where



Tz . (B9)

z
If we define a function f as

f@)=T1f(2) . (B10)
operating 7' on both sides of Eq. (B10) leads to

f@)=T"1(2) . (B11)
On the basis of Eq. (B7), Eq. (B12) is also proven.3’

" f@)=/@ . (B12)
From the combinations of Eqs. (B8) and (B10), and Egs. (B11) and (B12), we can obtain
Egs. (B13a) and (B13Db), respectively.

f@)=[@) . (B13a)

f(2)=[(2) . (B13b)
Note that Egs. (B13a) and (B13b) mean that although the functional forms of f and f are
different, the functional value f at the point Z (z ) is equal to the functional value f at z
(z). Furthermore, operation of 7' on Eq. (B8) leads to

f@)=T"7@). (B14)

As aresult of Egs. (B13b) and (B14), we can obtain Eq. (B15).

f@)=T"f(z) (B15)



Here we give the premises of LCPT: the generating function W, original hamiltonian H ,

and New Hamiltonian H are expandable as the power series in & as follows.

w=3 W, (B16)
i=0

H= iaiHi (B17)
i=0

H= ie’_,. (B18)

Il
=1

On the basis of the definition of Eq. (B3) and the assumption of Eq. (B16), we can also
express L, as the expansion as follows.

L, = ig"im : (B19)
where

L={w, }. (B20)

T = ig—'(z &l (—ij+l)J (B21a)

A g N i
T = ZT(Z g-’L_I.HJ (B21b)
Egs. (B10) and (B21a) or Egs. (B15) and (B21b) indicate the advantage of LCPT that after

W is once established through each order, we obtain the new transformed physical quantity

f as a function of z (Z) from f as a function of z (Z). Therefore, we can express the



new Hamiltonian H , action variable J, , angle variable @, , and frequency @, of mode k

straightforwardly as functions of z (Z ) by means of the transformations T (f ') as shown
in I-2, I-3, and I-4.

I-2. New Hamiltonian

If we replace in Eq. (B15) f and f by H and H , respectively, and express 7', H,

and H by their expansions, i.e. Egs. (B21b), (B17), and (B18), we can obtain the

representation of / with respect to imH , 1n the following way.

o w A @ Iy
> &' H, = Z‘%(Z g'"imﬂJ > e'H, (B22)

=0
The parameter ¢ which is introduced as a parameter for Lie transformation, Eq. (B2), is the
perturbation parameter. We obtain Egs. (B23a)—(B23e) at each order of ¢ from Eq. (B22).
g’ H,=H, (B23a)
g :H =H +LH,=H +{W, H) (B23b)

g :H, = %L]ZHO +L,H,+LH, +H,

(B23c)
:%{%{VK,HO}H{WstoH{Wle}+H2



33-_3:% 1H0+%LA1LA2HO %LA LH,+ %i *H, +LH,+L,H, +LH,+H,
1
= WL WL Ho b+ {Wl,{Wz,H }}+ 5 s, Ho b}
+E{W/17{VK9H1}}+{VV3,H0}+{W25H1}+{VK’H2}+H3
(B23d)
P Y PPN - -, PN 1 -5
& Hy = L Hy 4 LLLH, + - LLH, + DL Hy + L H,
L VALY S ALY o Y 3 09 AL 3 A ) 73
2 2 2 2
+LH,+L,H,+L[,H +L,H,
+H,
1

=§{W;,{WI,{W;,{W1,HO}}}}+é{Wl,{W2,{WI,H0}}}+é{W2,{m,{m,Ho}}}

b 1, W H 0, 01, 0, H )

b O Ho 4 O W, H O, 07 )

b OF VL4 0, H 3+ P

WL Hy g+ Wy, Hyy + W5, Hyy + W, Ho s + H,y

(B23e)
I-3. New momenta and coordinates
The new momenta p and coordinates q are also obtained in as follows.
P =Tp
=p, +e(-L)p, +&° (L, +;A )P + (B24a)

=pk—e{Wl,pk}—a%{Wz,pk}—%{Wl,{Wl,pk}m...



0 =40~ 0) = (Wong ) = O W 1) + (B24b)
In our MD calculations, we set up the initial conditions for the trajectory calculations
with respect to the new variables in Step 3 and then express them by the original variables
by means of inverse transformation in Step 4. For this reason, here we show that the

original variables can be also represented with respect to the new variables as follows.

P = fill_’k
R ~ 1=
=p, +&(L)p, +&°(L, +5L12)1_9k ¥ (B25a)

=z>k+e{Wl,ﬁk}+82<{W2,ﬁk}+§{Wl,{Wl,fok}}>+...
g =7, +s{m,m+82<§({wpm+{m,{m,@}}>+... (B25b)

I-4. New action variable

If in Eq. (B13a) f is replaced with the action variable J, of mode %, the new action

variable J, can be obtained as follows.

Jo(P.9) =17, (p,q)
=J,(P,q) (B26)
1
2w,

2—2

(ﬁkz +®.q,)

I-5. Determination of W

When H is in normal form, it depends on J but does not depend on @ . Therefore,

canonical transformation at a certain perturbation order i should be done to make H,



independent of ® . We show here how to determine J#; to obtain the new Hamiltonian H, .
The procedures to determine the higher order generating functions are likewise.

According to the procedure of perturbation theory, solutions of a certain perturbation
order i are determined using the variables obtained at the perturbation order i —1. Therefore,
W, is determined so that H, depends only on the zeroth order action variables J, and is
independent of the zeroth order angle variables, @ . The equations of motion for zerothe

order are given by

H, dq.
o, _ 44, (B27a)
op, dt
and
H dp.
OHy __dp. (B27b)
0q, dr
Where H, is given by Eq. (2). The solutions of Egs. (B27a,b) are given by
2J
q, = L cos@, (B28a)
Wy
and
P, =—2J, 0, sino, , (B28b)
where
O, =o,+pf, . (B29)



For the canonical transformation at first order perturbation, here we follow Eq. (B23Db).

Functional form of H, is given by Eq. (3) and it is expressed by using Eq. (B28a) as follows.

2J,
202, 2y c0s O, cos O, cos O,
o 0, o,

+cos(0, -0, +0,)+cos(0, + 0, +6,)}

(B30)
Because all terms in H; depend on @, W; must be determined so that all terms of H; is

canceled. Therefore, from Eq. (B23b), we can determine W) by requiring Egs. (B31) and

(B32) to be satisfied.
W, H,}=-H, (B31)
H =0 (B32)

The left hand side of Eq. (B31) is transformed as follows.

oW, 0H, oH, oW,

(B33)

By integrating Eq. (B33) and using Egs. (B28a), (B29) , (B30) and (B31), W) is

determined as follows:
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_ 1 ﬁ‘,c,-,vk ' 1 - Pi49c _ PiPiPi 9Pk qiq,-pk)
67 " w+to -, w, 0,0 ,0, o, ,
1 ilj i j i j ilj

N (_ququrPP,Pk_quqk_qupk) . (B34)

O, + 0, + o, , 0,0,0, o, w,
N 1 (- Pid;4x  PiP;Py N q:.P;4r qiquk)

O, -0, + o, w, 0,00, o, @,
+ 1 (- P44, + PP ;P N q:P ;4 4 q:9;P N

0, -0, -0, o, 0,0,0, o, ,

We can also determine W, with i > 1 in the same way. Note that the order of W; with

respect to p and q is i+2.

I1. Quantum normal form theory3°®

36 H. Waalkens, R. Schubert and S. Wiggins, Nonlinearity, 2008, 21, R1-R118.

Here we describe the essential materials for our calculation as to quantum NFT that is
written in the review by Waalkens and co-workers,*® modifying in the way applicable to
our analysis.

In the NFT for quantum mechanics, the canonical transformation for classical mechanics
is replaced by the unitary transformation, and the dynamical variables of classical
mechanics are treated with the corresponding operators in quantum mechanics.

To calculate the quantum frequency @, the energy eigenvalue must be derived. If we

m 2
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represent J, as

J ==l 00 (S1)
2w,

where p, and ¢, are operators of p, and g, , respectively, the eigenfunctions of J . (k=
1-N) are equivalent to those of the harmonic oscillators, and the eigenvalues are equivalent
to those of the harmonic oscillators multiplied by 1/@;. Therefore, the vibrational energy
eigenvalue is easily obtained if the Hamiltonian is expressed only by J . - For this reason,
the energy eigenvalue is obtained by a unitary transformation so that the new Hamiltonian
H' is written only in terms of J . - In this respect, the direction of the transformation is the
same as in classical mechanics, in which H depends only on J . » despite the differences
stated above.

The unitary transformation is performed through the Hamiltonian in symbolic
representation rather than directly. This is because the symbols are much easier to treat than
the operators. Weyl quantization is used here to associate operators in a Hilbert space with
functions in a phase space. In the context of Weyl quantization, a variable A(p,q), which is
a function of p and q, is called a (Weyl) symbol of the corresponding operator A. Thus, the

transformation is performed in three steps rather than directly. In Step 1, operators p,, q,,

J . » and H are replaced by the corresponding symbols. In Step 2, unitary transformation is

12



performed for the symbols. In Step 3, the symbols are quantized by Weyl quantization.
Bellow, H' is the symbol of the Hamiltonian in the quantum normal form, and H' is the
operator in the quantum normal form.

The procedures are described below.

Step 1:

By means of Weyl quantization, the operators of coordinate ¢, and momentum p, of

mode k act on a wave function according to

v (@) =qv(q), (S2)
() =1V @ (S3)
i 0q,

Weyl quantization extends these prescriptions to general functions of q and p by

requiring that the quantization of the exponential function

L a)p)
e 4
is the phase space translation operator

f(fq,fp) _ eﬁ(<§p,a>+<g’q,ﬁ>> , (s9)

where &, and & are real numbers, and the bracket (,) is the scalar product. Using Fourier

inversion, we can represent a function in phase space as

13



A@Lp):EZ%?Fiifldédégﬂévé)@ﬂ%@%@@l (S6)

where

A =] [ dadpacape " (57

is the Fourier transform of A(q,p). The Weyl quantization Op[A4] of 4 is then defined by

(&-a)H{éop)

replacing the factor e" ) in Eq. (S6) by the operator T (&> &) s 1€,

1

A =0p[A] EW

[ [ dedzac,.e)ie,.s,) . (S8)
where Op[ ] is defined as replacing the symbol inside the bracket with the corresponding
operator by the Weyl quantization. The quantization can also be inverted, as follows:
A(q.p) = Tr[7(q,p) Op[4]]. (S9)
As noted above, the function 4 is called a (Weyl) symbol of the operator A. The symbols
of the Hamiltonian and action variables are obtained from Eq. (S9).
Step 2:
The unitary transformation of an operator j} is given by
fl=e " feh | (S10)
where ¢ is a perturbation parameter for performing the unitary transformation using

perturbation theory, W =Op[W], and W is a polynomial of p and q. As in the symbolic

representations of operators, the unitary transformation is also represented by symbols. It is
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easily derived that Eq. (S10) is represented by the corresponding symbols as
' S g )
['=2M,' 1 (S11)

where M » 1s defined as

n e W Vv vV ow
My =Y Cil(04.0p )~ (0q,0p 1, (S12)
k=0
where
h ~1)*
C, =) ) (S13)
27 (2k+1)!
The operators é\;, ép, éq, and évp on the right-hand side of Eq. (S12) are partial

derivatives with respect to p or q as indicated by the subscripts, and the arrows specify
whether they act on the left or the right. For example, operation of the term in Eq. (S12)

with k equal to zero on H is expressed as

WV vV W N O OW oH OH oW
CHI(0,.0,)—(0,,0,)1H = - '
0 [< q P> < q P>] ;(6(11 6171‘ 6q/‘ Gpj

(S14)

For the derivation of Eq. (S11), see the reference.’® The equation for the new Hamiltonian

represented by H' is obtained if fand f" are replaced by H and H', respectively, in Eq.

(S11). W, H, and H' are assumed to be represented by their series expansions in the

following way.

(S15)
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H=>)¢'H, (S16)

H'=Y¢'H, (S17)
i=0
Using (S15), MW can be expressed as
W =3 6 Y Col{ BBy ) (BB P
m;O k=0 , (818)
= Z‘gmﬁ;[mﬂ
m=0
where
W =S CollB B0 )~ (BB P (S19)
k=0

To compare the terms at certain orders of & Eq. (S18) is inserted into Eq. (S11), and /"

and f are replaced by the expansions of H' and H, respectively, as follows.

I
= Z%{zngmuzCk[<‘%vq°\alp>_<gw‘%vp>]2k+l} 2 & H, (520)

e :H',=H, (S21)

g H =H +MH, (S22)
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1

g H', = EM,ZHO +M,H,+MH, +H, (S23)
3 1 ~3 1 .~ = 1 ~ A 1 ~5
e H,=—M'H+—MM,H,+—M,MH,+—M H,
6 2 2 2 (S24)
+MH,+M,H, + M H,+H,
4 ' 1 o~ 1 ~ ~ = 1 ~ ~5
e H,=—M H+—MM,MH,+—M,M H,
24 6 6
1 ~ 5 1 ~ ;4 1~ 1 ~ 5
+-M " MH,+—M H +-M "H,+-M, H,
6 6 2 2 (S25)

1 o~ - I ~ 1 ~ ~ I ~ -
+—MM,H +—MMH +—MM,H,+—M,MH,
2 2 2 2
+]\;[1H3 +]\A42H2 +M3H1 +Z\;[4H0 +H,
As is written in the review,?¢ the classical and quantum normal forms are very similar. In
our description, one can see the perturbation equations Eqs. (S22)—(S25) are the same as

the classical versions, Eqs. (B23a)-(B23e), if the operators M , are replaced by the

classical analogue im In addition to the difference between M, and ., , other differences

m?

arise in the process of Step 3. The result is given in the main text.

II1. Frequency of H,O

The frequencies of H,O are plotted in Fig. A. The symbols (open circle, filled triangle,
open square) and the numbers in parenthesis have the same meaning as those in Fig. 1 and

Table 1 in the text. Filled triangles indicate the classical mechanical frequencies obtained
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Frequencies of bending Frequencies of symmetric and
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Fig. A

by (1) the zeroth-, (2) second-, and (3) fourth-order canonical perturbation, and by (4) FT of

MD calculations on QFF PES. Filled triangles in the column of (5) indicate the classical

mechanical frequencies from FT of direct ab initio MD calculation at the level of MP2/aug-

cc-pVTZ. Circles indicate the quantum mechanical frequencies from (1) the zeroth-, (2)

second-, and (3) fourth-order perturbation theory and from (4) cc-VSCF with QFF PES.

Circles in the column (5) indicate the quantum mechanical frequencies from cc-VSCF with

the direct PES at the MP2/aug-cc-pVTZ level of theory. Squares in the column (5) are the

quantum mechanical frequencies from VCI with direct PES at the MP2/aug-cc-pVTZ level
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of theory taken from the literature.!

IV. Trajectory

A trajectory in phase space generated with the initial condition of Egs. (63)—(66) is shown

in Fig Bl. Blue, red, and green lines are the trajectories corresponding to symmetric

stretching, bending, and antisymmetric stretching vibrational modes (normal modes),

respectively. The trajectory is drawn in view of the original momenta (horizontal line) and

coordinates (vertical line). Units for all momenta and coordinates are atomic units. The

same trajectory but in view of the new momenta (horizontal line) and coordinates (vertical

line)} in normal form is shown in Fig. B2. The color of lines and the units are same as Fig.

BI.
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V. Power spectra of C,oHg

Power spectra of C,gHg from the MD calculations for mode 1-8 frequencies are shown here.
Intensity (/) is normalized by the total intensity (/y). The black arrows indicate the peak

positions of spectra in 0.0 ps -0.5 ps, from which we read @],
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