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I. Classical normal form theory37

37 T. Komatsuzaki and R. S. Berry, Adv. Chem. Phys., 2002, 123, 79–152.

Here we describe the essence of the review37 by Komatsuzaki and Berry about the 

classical NFT that is necessary for the explanation of the analysis and calculations of our 

present paper. The theory described here is also called as Lie canonical perturbation theory 

(LCPT). LCPT is a convenient method to perform canonical transformation by perturbative 

calculation and obtain the Hamiltonian in normal form and the corresponding dynamical 

variables. Here we give a brief description of LCPT.

   By means of LCPT, one can transform the original Hamiltonian, H, and dynamical 

variables, J, , p, and q, into new ones, , , , , and , respectively. Moreover, if H J Θ p q

the generating function W used for LCPT is properly chosen, we can obtain the new 

Hamiltonian in normal form, namely;

 . (B1)　





0

)()(),(
i

i
i

W
HHH JJΘJ 

Here, the Hamiltonian in normal form means that it is represented only by .J

I-1. Definitions and assumptions

For a parameter , Lie transformation, , is defined as follows:T̂

 , (B2) zz WLT ˆexpˆ 
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where z represents a vector whose components are the dynamical variables p and q and  WL̂

is defined as

 , (B3) zz ,ˆ WLW 

where W is a polynomial of p and q and { } is the Poisson bracket defined by
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The inverse transformation is defined as follows.

 (B5) zz WLT ˆexpˆ 1 

It is proven that the Lie transformation and the inverse transformation, Eqs. (B2) and (B5), 

are canonical transformation if p and q are canonical. If the right hand sides of Eqs. (B2) 

and (B5) are expressed as the Taylor expansions with respect to ,  and  are T̂ 1ˆ T

represented by

 , (B6)







0 !
)ˆ(ˆ

i

i
i

W

i
LT 

and

 . (B7)




 
0

1

!
)ˆ(ˆ

i

i
i

W

i
LT 

On the basis of Eq. (B6), Eq. (B8) can be proven. See ref 37.

 , (B8))()(ˆ zz ffT 

where
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 . (B9)zz T̂

If we define a function  asf

 , (B10))(ˆ)( zz fTf 

operating  on both sides of Eq. (B10) leads to1ˆ T

. (B11))(ˆ)( 1 zz fTf 

On the basis of Eq. (B7), Eq. (B12) is also proven.37

. (B12))()(ˆ 1 zz ffT 

From the combinations of Eqs. (B8) and (B10), and Eqs. (B11) and (B12), we can obtain 

Eqs. (B13a) and (B13b), respectively.

 . (B13a))()( zz ff 

 . (B13b))()( zz ff 

Note that Eqs. (B13a) and (B13b) mean that although the functional forms of  and  are f f

different, the functional value  at the point  ( ) is equal to the functional value  at  f z z f z

( ). Furthermore, operation of  on Eq. (B8) leads toz 1ˆ T

 . (B14))(ˆ)( 1 zz fTf 

As a result of Eqs. (B13b) and (B14), we can obtain Eq. (B15). 

 (B15))()( 1 zz fTf 
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Here we give the premises of LCPT: the generating function W, original hamiltonian H , 

and New Hamiltonian  are expandable as the power series in  as follows.H

(B16)
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On the basis of the definition of Eq. (B3) and the assumption of Eq. (B16), we can also 

express  as the expansion as follows.WL̂

 , (B19)
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where

 . (B20)},{ˆ 　　　ii WL 

Using Eq. (B19), we can express Eqs. (B6) and (B7) as the expansions as follows.

 (B21a) 
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(B21b) 
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Eqs. (B10) and (B21a) or Eqs. (B15) and (B21b) indicate the advantage of LCPT that after 

W is once established through each order, we obtain the new transformed physical quantity 

 as a function of  ( ) from  as a function of  ( ). Therefore, we can express the f z z f z z
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new Hamiltonian , action variable , angle variable , and frequency  of mode k H kJ kΘ k

straightforwardly as functions of  ( ) by means of the transformations  ( ) as shown z z T̂ 1ˆ T

in I-2, I-3, and I-4. 

I-2. New Hamiltonian

If we replace in Eq. (B15)  and  by  and , respectively, and express , , f f H H 1ˆ T H

and  by their expansions, i.e. Eqs. (B21b), (B17), and (B18), we can obtain the H

representation of  with respect to  in the following way.H nmHL̂

(B22) 
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The parameter  which is introduced as a parameter for Lie transformation, Eq. (B2), is the 

perturbation parameter. We obtain Eqs. (B23a)(B23e) at each order of  from Eq. (B22).
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I-3. New momenta and coordinates

   The new momenta  and coordinates  are also obtained in as follows.p q

(B24a)
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In our MD calculations, we set up the initial conditions for the trajectory calculations 

with respect to the new variables in Step 3 and then express them by the original variables 

by means of inverse transformation in Step 4. For this reason, here we show that the 

original variables can be also represented with respect to the new variables as follows.

(B25a)
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I-4. New action variable

   If in Eq. (B13a)  is replaced with the action variable  of mode k, the new action f kJ

variable  can be obtained as follows.kJ

(B26)
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I-5. Determination of W

When  is in normal form, it depends on  but does not depend on . Therefore, H J Θ

canonical transformation at a certain perturbation order i should be done to make  iH
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independent of . We show here how to determine W1 to obtain the new Hamiltonian . Θ 1H

The procedures to determine the higher order generating functions are likewise. 

According to the procedure of perturbation theory, solutions of a certain perturbation 

order i are determined using the variables obtained at the perturbation order . Therefore, 1i

W1 is determined so that  depends only on the zeroth order action variables J, and is 1H

independent of the zeroth order angle variables, . The equations of motion for zerothe Θ

order are given by

 , (B27a)
d
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Where  is given by Eq. (2). The solutions of Eqs. (B27a,b) are given by0H
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For the canonical transformation at first order perturbation, here we follow Eq. (B23b). 

Functional form of H1 is given by Eq. (3) and it is expressed by using Eq. (B28a) as follows.
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Because all terms in H1 depend on , W1 must be determined so that all terms of H1 is Θ

canceled. Therefore, from Eq. (B23b), we can determine W1 by requiring Eqs. (B31) and 

(B32) to be satisfied.

(B31)101 },{ HHW 
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The left hand side of Eq. (B31) is transformed as follows.

  . (B33)
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By integrating Eq. (B33) and using Eqs. (B28a),  (B29) , (B30) and (B31), W1 is 

determined as follows:
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We can also determine  with i > 1 in the same way. Note that the order of Wi with iW

respect to p and q is i+2.

II. Quantum normal form theory36

36 H. Waalkens, R. Schubert and S. Wiggins, Nonlinearity, 2008, 21, R1-R118.

Here we describe the essential materials for our calculation as to quantum NFT that is 

written in the review by Waalkens and co-workers,36 modifying in the way applicable to 

our analysis. 

In the NFT for quantum mechanics, the canonical transformation for classical mechanics 

is replaced by the unitary transformation, and the dynamical variables of classical 

mechanics are treated with the corresponding operators in quantum mechanics. 

To calculate the quantum frequency , the energy eigenvalue must be derived. If we qu
m
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represent  askĴ
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where  and  are operators of  and , respectively, the eigenfunctions of  (k = kp̂ kq̂ kp kq kĴ

1–N) are equivalent to those of the harmonic oscillators, and the eigenvalues are equivalent 

to those of the harmonic oscillators multiplied by 1/k. Therefore, the vibrational energy 

eigenvalue is easily obtained if the Hamiltonian is expressed only by . For this reason, kĴ

the energy eigenvalue is obtained by a unitary transformation so that the new Hamiltonian 

 is written only in terms of . In this respect, the direction of the transformation is the 'Ĥ kĴ

same as in classical mechanics, in which  depends only on , despite the differences H kJ

stated above.

The unitary transformation is performed through the Hamiltonian in symbolic 

representation rather than directly. This is because the symbols are much easier to treat than 

the operators. Weyl quantization is used here to associate operators in a Hilbert space with 

functions in a phase space. In the context of Weyl quantization, a variable A(p,q), which is 

a function of p and q, is called a (Weyl) symbol of the corresponding operator . Thus, the Â

transformation is performed in three steps rather than directly. In Step 1, operators , , kp̂ kq̂

, and  are replaced by the corresponding symbols. In Step 2, unitary transformation is kĴ Ĥ
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performed for the symbols. In Step 3, the symbols are quantized by Weyl quantization. 

Bellow,  is the symbol of the Hamiltonian in the quantum normal form, and  is the 'H 'Ĥ

operator in the quantum normal form. 

The procedures are described below.

Step 1: 

By means of Weyl quantization, the operators of coordinate  and momentum  of kq̂ kp̂

mode k act on a wave function according to

, (S2))()(ˆ qqqq kk  

. (S3)
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Weyl quantization extends these prescriptions to general functions of q and p by 

requiring that the quantization of the exponential function

(S4)
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where  and  are real numbers, and the bracket  is the scalar product. Using Fourier q p  , 

inversion, we can represent a function in phase space as
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is the Fourier transform of . The Weyl quantization Op[A] of A is then defined by ),( pqA

replacing the factor  in Eq. (S6) by the operator , i.e.,
),,(i pq qp  

he ),(ˆ
pq T

 , (S8)),(ˆ),(
)2(

1][Opˆ
2 pqpqpq 


TAddAA N  










h

where Op[ ] is defined as replacing the symbol inside the bracket with the corresponding 

operator by the Weyl quantization. The quantization can also be inverted, as follows:

. (S9)]][Op),(ˆ[Tr),( * ATA pqpq 

As noted above, the function A is called a (Weyl) symbol of the operator . The symbols Â

of the Hamiltonian and action variables are obtained from Eq. (S9). 

Step 2:

The unitary transformation of an operator  is given byf̂

 , (S10)
WW
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where  is a perturbation parameter for performing the unitary transformation using 

perturbation theory, =Op[W], and W is a polynomial of p and q. As in the symbolic Ŵ

representations of operators, the unitary transformation is also represented by symbols. It is 
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easily derived that Eq. (S10) is represented by the corresponding symbols as

, (S11)





0

ˆ
!

'
l

l
W

l

fM
l

f 

where  is defined as WM̂

, (S12)





0

12],,[ˆ
k

k
kW WCM pqpq

wvvw

where

 . (S13)
)!12(

)1()
2

( 2





k

C
k

k
k

h

The operators , , , and  on the right-hand side of Eq. (S12) are partial q
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derivatives with respect to p or q as indicated by the subscripts, and the arrows specify 

whether they act on the left or the right. For example, operation of the term in Eq. (S12) 

with k equal to zero on H is expressed as

. (S14)
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For the derivation of Eq. (S11), see the reference.36 The equation for the new Hamiltonian 

represented by  is obtained if f and  are replaced by H and , respectively, in Eq. 'H 'f 'H

(S11). W, H, and  are assumed to be represented by their series expansions in the 'H

following way.

(S15)
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(S16)





0i

i
i HH 

 (S17) 





0

'
i

i
i HH 

Using (S15),  can be expressed as WM̂
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To compare the terms at certain orders of , Eq. (S18) is inserted into Eq. (S11), and  'f

and f are replaced by the expansions of  and H, respectively, as follows.'H

 (S20)
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Consequently, the following recursive equations are obtained. 
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As is written in the review,36 the classical and quantum normal forms are very similar. In 

our description, one can see the perturbation equations Eqs. (S22)(S25) are the same as 

the classical versions, Eqs. (B23a)(B23e), if the operators  are replaced by the mM̂

classical analogue . In addition to the difference between and , other differences mL
)

mM̂ mL
)

arise in the process of Step 3. The result is given in the main text. 

III. Frequency of H2O

The frequencies of H2O are plotted in Fig. A. The symbols (open circle, filled triangle, 

open square) and the numbers in parenthesis have the same meaning as those in Fig. 1 and 

Table 1 in the text. Filled triangles indicate the classical mechanical frequencies obtained
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Fig. A

by (1) the zeroth-, (2) second-, and (3) fourth-order canonical perturbation, and by (4) FT of 

MD calculations on QFF PES. Filled triangles in the column of (5) indicate the classical 

mechanical frequencies from FT of direct ab initio MD calculation at the level of MP2/aug-

cc-pVTZ. Circles indicate the quantum mechanical frequencies from (1) the zeroth-, (2) 

second-, and (3) fourth-order perturbation theory and from (4) cc-VSCF with QFF PES. 

Circles in the column (5) indicate the quantum mechanical frequencies from cc-VSCF with 

the direct PES at the MP2/aug-cc-pVTZ level of theory. Squares in the column (5) are the 

quantum mechanical frequencies from VCI with direct PES at the MP2/aug-cc-pVTZ level 
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of theory taken from the literature.1 

IV. Trajectory

A trajectory in phase space generated with the initial condition of Eqs. (63)(66) is shown 

in Fig B1. Blue, red, and green lines are the trajectories corresponding to symmetric 

stretching, bending, and antisymmetric stretching vibrational modes (normal modes), 

respectively. The trajectory is drawn in view of the original momenta (horizontal line) and 

coordinates (vertical line). Units for all momenta and coordinates are atomic units. The 

same trajectory but in view of the new momenta (horizontal line) and coordinates (vertical 

line)} in normal form is shown in Fig. B2. The color of lines and the units are same as Fig. 

B1.
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Fig. B1
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Fig. B2
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V. Power spectra of C10H8

Power spectra of C10H8 from the MD calculations for mode 1-8 frequencies are shown here. 
Intensity (I) is normalized by the total intensity (I0). The black arrows indicate the peak 
positions of spectra in 0.0 ps -0.5 ps, from which we read cl(∞)[0].

Mode 1    Mode 2

Mode 3   Mode 4
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Mode 5   Mode 6

Mode 7   Mode 8
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