Porous Cobalt, Nitrogen-Codoped Carbon Nanostructures from Carbon Quantum Dots and VB12 and Their Catalytic Properties for Oxygen Reduction

Supporting Information

Fig. S1 (a) TEM image of CQDs. Inset is the HRTEM image of a single CQDs. (b) The particle size distribution of

CQDs.

Fig. S2 Raman spectrum of CQDs.

Fig. S3 FTIR spectrum of CQDs.

Fig. S4 The molecular structure of VB12.

Fig. S5 TEM image of pyrolyzed VB12 at 700 °C for 4h.

Fig. S6 The high resolution N1s spectrum of (a) $Co_{1.23}/N_{3.05}/C-500$, (b) $Co_{1.12}/N_{2.92}/C-700$ and (c) $Co_{1.03}/N_{2.79}/C-900$.

Fig. S7 TEM images of (a) $Co_{1.23}/N_{3.05}/C$ -500 and (b) $Co_{1.03}/N_{2.79}/C$ -900.

Fig. S8 CVs of (a) $Co_0/N_0/C$, (b) $Co_{0.68}/N_{1.22}/C$, (c) $Co_{1.87}/N_{5.02}/C$ and (d) $Co_{3.68}/N_{5.88}/C$ in 0.1 M HClO₄ solution saturated with N₂ (red line) and O₂ (black line) at a scan rate of 50 mV·s⁻¹.

Table S1	Finely	tuned	contents	for	Co	and N	١.
----------	--------	-------	----------	-----	----	-------	----

Entry	CQDs:VB12 [mg/mg]	Raw materials:Products for Co concentration	Raw materials:Products for N concentration
1	1:0	0:0	0:0
2	9:1	0.435:0.68	1.45:1.22
3	4:1	0.87:1.12	2.89:2.92
4	1:1	2.175:1.87	7.23:5.02
5	0:1	4.35:3.68	14.46:5.88

Table S2 Deconvolution results (at%) for N 1s high-resolution spectra. Compared with other samples, the $Co_{1.12}/N_{2.92}/C$ -700 possesses the highest levels of quaternary nitrogen content.

Sampla	Pyridinic	Pyrrolic	Quaternary
Sample	(398.5 eV)	(399.8 eV)	(401 eV)
Co _{1.23} /N _{3.05} /C-500	1.8	1.6	0.9
$Co_{1.12}/N_{2.92}/C$ -700	1.2	1.7	1.3
$Co_{1.03}/N_{2.79}/C-900$	1.7	0.8	0.5
Co ₀ /N ₀ /C-700			
$Co_{0.68}/N_{1.22}/C$ -700	0.6	0.5	0.8
$Co_{1.87}/N_{5.02}/C$ -700	1.8	1.9	1.1
$Co_{3.68}/N_{5.88}/C$ -700	2.3	2.1	1.1

Entry	Temperature [°C]	Co concentration [%]	N concentration [%]	BET area [m ² ·g ⁻¹]
1	500	1.23	3.05	137.51
2	900	1.03	2.79	142.38

Table S3 The Co, N concentrations and BET area of the samples prepared at 500 and 900 °C.

Table S4 The peak current density of ORR in 0.1 M KOH and $HClO_4$ solution saturated with O_2 at the scan rate of 50 mV·s⁻¹.

Sample	Peak current density (mA·cm ⁻¹)	
	Alkaline	Acid
Co ₀ /N ₀ /C	0.46	
Co _{0.68} /N _{1.22} /C	0.39	0.87
Co _{1.12} /N _{2.92} /C	0.57	1.11
Co _{1.87} /N _{5.02} /C	0.55	0.64
Co _{3.68} /N _{5.88} /C	0.23	0.61

	Peak potential (vs. RHE)	Pyrolysis temperature	
Electrocatalyst			Literature
	[V]	[°C]	
Co-N-GN	0.781		S1
			~ -
Co/N/rGO(NH ₃)	0.626	850	S 2
Co/N/C	0.756	800	\$3
Contract	0.750	000	55
N-CoO	0.486		S4
700°C/GC	0.776	700	S5
Co-N-C	0.766	900	S6
Co-PPv/BP	0.809		87
	0.007		57
Co/N/C	0.844	700	Our work

 Table S5 Various electrocatalysts for oxygen reduction reaction.

References

- S1 S. Jiang, C. Zhu, S. Dong, J. Mater. Chem. A, 2013, 1, 3593.
- S2 K. Niu, B. Yang, J. Cui, J. Jin, X. Fu, Q. Zhao, J. Zhang, J. Power Sources, 2013, 243, 65.
- S3 L. Wang, L. Zhang, L. Bai, L. Han, S. Dong, *Electrochem. Commun.*, 2013, 34, 68.
- S4 H. Yu, Y. Li, X. Li, L. Fan, S. Yang, *Chem. Eur. J.*, 2014, **20**, 3457.
- S5 A. Pacuła, K. Ikeda, T. Masuda, K. Uosaki, J. Power Sources, 2012, 220, 20.
- S6 Y. Zhai, C. Zhu, E. Wang, S. Dong, *Nanoscale*, 2014, 6, 2964.
- S7 Z. Li, Z. Liu, K. Zhu, Z. Li, B. Liu, J. Power Sources, 2012, 219, 163.