A kinetic study of the CH₂OO Criegee intermediate selfreaction, reaction with SO₂ and unimolecular reaction using cavity ring-down spectroscopy: Supplementary Information

Rabi Chhantyal-Pun¹, Anthony Davey¹, Dudley E. Shallcross¹, Carl J. Percival² and Andrew J. Orr-Ewing¹

CRDS spectrometer

A 106-cm long, nearly confocal cavity with high reflectivity mirrors (R >99.9% at 355 nm, r = 100 cm) was used for the cavity ring down spectrometer. Probe laser radiation was passed through one of the mirrors into the cavity. The probe radiation was generated by spatially filtering the frequency doubled fundamental output from a dye laser. Spatial filtering used a pinhole and lens assembly. A New Focus 1801 photodiode detector measured the decay profile of the light transmitted from the cavity. Signal from the photodiode was digitized using a LeCroy Waverunner 6030 oscilloscope (8 bit, 350 MHz, 2.5 GSamples/s). A BNC 555 digital delay-pulse generator was used to change the delay between probe and photolysis lasers.

A LabView virtual instrument (VI) was created to acquire data from the oscilloscope and control the pulse generator. The VI also performed single exponential fits to the ring down traces and background subtraction (for the ring-down events obtained with and without photolysis laser on) at different time delays. Three successive ring-down times were averaged for both the photolysis laser on and off at each time delay. Ring-down times were weighted and averaged based on the mean square errors of the exponential fits. Ring-down times of ~5.6 microseconds with <0.5% fluctuations were obtained for empty cavity conditions at 355 nm. Temporal instrumental resolution of \leq 10 microseconds was

¹ School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS, United Kingdom

² Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Simon Building, Oxford Road, Manchester, M13 9PL, United Kingdom

expected for kinetic decay traces. Time steps of 20 and 200 μ s were used to obtain kinetic decay traces for CH₂OO signals with and without added SO₂, respectively.

Path length determination for the reactive intermediates in the cavity

Absorption of the probe 355 nm radiation by CH_2I_2 ($\sigma_{355nm} = 1.92 \times 10^{-19} \text{ cm}^2$ molecule⁻¹) can give rise to a strong background absorption signal which results in short ring-down times and thus low sensitivity for the spectrometer. To overcome this issue, the incoming and outgoing ports were placed close to the central region of the flow tube, where the overlap of the photolysis and probe beams was maximal, to minimize the column length of CH_2I_2 . Figure S1 shows the geometry of the flow tube used. As the precursor does not flow along the whole length of the flow tube, experiments were performed to calibrate the length of the region of the flow tube occupied by the CH_2I_2 .

Figure S1. Schematic diagram of the layout of the flow tube and cavity ring down spectrometer, showing the overlap geometry of the photolysis and probe beams. The inset shows the overlap in detail. Geometric arguments indicate an overlap length d = 5.74 cm.

The precursor column length (\Box) in the flow tube was measured using calibrated mixtures of CH_2I_2/N_2 and NO_2/N_2 . Absorption cross sections for both of these molecules are well known at 355 nm. Concentrations were calculated using the dilution ratio used to make the calibration mixture and the pressure readings taken at the centre of the flow tube. The sample distribution was approximated to be homogenous along the path length of the probe laser through the sample gas column. From measurements of the ring-down time of the cavity, the sample column lengths at 7 Torr total pressure were calculated to be $\Box = 39 \pm 2$ and 40 ± 2 cm for CH_2I_2/N_2 and NO_2/N_2 mixtures respectively. In both cases, uncertainties in absorption cross sections determine the precision of the measurements. These column lengths are significantly less than the full cavity length because of the confining effects of the purge gas flows and the chosen arrangement of inlet and outlet ports. Table S1 presents values of \Box for different total pressures used in the current work.

Table S1 Total precursor column lengths determined for different pressure conditions in the flow tube.

Total pressure / Torr	7	10	15	20	25	30
Sample column length / cm	39	39	36	34	38	32

The photolysis beam was introduced at a 5° angle with respect to the cavity ring down detection axis as shown in the inset in Figure S1. Geometric arguments indicate that the unfocused 5 mm diameter flat-top beam (laser manufacturer's beam profile specification in the far field) will have an overlap length, d = 5.74 cm with the probe beam around the middle section of the cavity. The probe laser beam waist at the centre of the nearly confocal cavity is 0.024 cm which is more than two orders of magnitude smaller than the overlap length and an order of magnitude smaller than the photolysis beam radius. Therefore, any effects of a Gaussian probe beam profile on the overlap are negligible.

The distribution of precursor molecules was expected to be homogenous around the centre of the flow tube (within the radical production region), as the precursor column length is nearly an order of magnitude larger than the region where the reaction kinetics are initiated and probed under all the pressure conditions we employ. Thus, the effective path length for absorption measurements of the intermediate produced in the flow tube should be determined by the overlap between the photolysis

and probe laser beams. The overall effective path length (corresponding to one ring-down time, τ) for the probe light through the volume in which CH₂OO intermediates form and react was 90 m.

The photolysis beam has a significantly larger diameter than the probe beam, so there will be diffusion both out of and into the probe volume. Our photolysis beam has a top-hat intensity profile and a diameter of 5 mm. The probe beam diameter is 0.48 mm, and thus there will be only a very low CH₂OO concentration gradient across the probe region. The radial diffusion in two concentric cylinders is expected to be a first order process, and this model is taken to be a good description of our experimental arrangement because the angle between the two cylinders is small (5°). The diffusion distance can be estimated for CH₂OO based on the diffusion coefficient calculated using Chapman-Enskog theory. Using a collision integral value for diffusion of H₂O in air as a lower limit for the CH₂OO collision integral, diffusion coefficient values of approximately 11 and 2.6 cm² s⁻¹ were calculated for 7 and 30 Total pressures. These diffusion coefficient values translate to root mean square diffusion distance of 4.7 and 2.3 mm in 10 ms (our longest measurement times) which are within the diameter of the photolysis beam. Thus, we would not expect significant effects from diffusion in our measurements, consistent with the pure second order decay profile for CH₂OO loss in the absence of SO₂ at total pressures from 7 to 30 Torr.

Flow characterization

The Reynolds number, *Re*, for the gas flow was calculated using the following equation

$$Re = \frac{4Q}{\pi v b}$$
(S1)

where Q is the volumetric flow rate, v is the kinematic viscosity of the gas and b is the diameter of the tube. A kinematic viscosity value for nitrogen at 1 bar and 20 °C of ~1.5x10⁻⁵ m²/s was used. This value is expected to increase at lower pressure and thus the calculated Re value is taken as an upper limit. The gas samples flow through tubes with diameters 0.635 cm (mass flow controller opening) and 2 cm before entering the main flow tube, which has a diameter of 6 cm. The Q value, determined by the

settings of the mass flow controllers, was expected to be constant in different diameter tubes. Table S2 shows the Re values calculated for the two tubes at the limiting values of the total volumetric flow rates used for different experiments in this work. The geometry of the main flow tube does not have a constant cross-sectional area orthogonal to the flow, making the calculation of Re value along the detection axis of the spectrometer non-trivial and beyond the scope of this work. Nevertheless, the Re value along the detection axis is expected to be smaller than the calculated values as the gases expand along the detection axis as well as orthogonal to it. At the Re values shown in Table S2, the flow should be laminar. Thus, over the different pressure conditions used for different experiments in this work, flow in the detection region of the flow tube should also be laminar. However, the arrangement of mass flow controllers connected to a 0.635 cm diameter manifold prior to the 2.0 cm tubing should ensure complete mixing of precursor gases.

Table S2 Reynolds numbers, *Re*, for the flow system calculated using Equation (S1).

Tube diameter (cm)	Re (50 sccm)	Re (500 sccm)	
0.635	10.9	109	
2	3.47	34.7	

The Knudsen number, *Kn*, for the gas flow was calculated using

$$Kn = \frac{\lambda}{L}$$
(S2)

where λ is the mean free path of the gas molecules and L is a representative physical length. A mean free path < 5 µm is expected for nitrogen at pressures > 7 Torr and a temperature of 20 °C. The diameter of the flow tube (6 cm) is taken as the physical length of relevance because the column length of the gases in the flow tube (~40 cm, from the previous section) should have a minimal effect. *Kn* values <0.0001 are calculated for various pressures used for the experiments in this work. At such *Kn* values, gas-gas collisions are expected to dominate over gas-wall collisions. Thus, the flow in the detection region of the flow tube is expected to be in the viscous laminar regime, dominated by gasgas collisions, over the different pressure conditions used for the experiments. Time-dependent decay signals corresponding to CH_2OO loss in the presence and in the absence of SO_2 for various total pressure conditions were obtained at a 2 Hz repetition rate. No direct measurement of the dynamic flow rate of reaction species along the detection axis of the flow tube was performed in this work. However, for a range of pressure conditions, the effective CH_2OO second order decay rate coefficients (scaled by absorption cross section, see main text), k', were verified to agree (within the error of the fitted values) at measurement repetition rates of 2 and 1 Hz, as shown in Figure S2 for the case of 30 Torr total pressure. This agreement indicated that the sample refresh rate was fast enough not to affect our measurements of chemical reactivity.

Figure S2. CH_2OO signal decay traces in the absence of SO_2 . Both traces were taken for the same CH_2I_2 , O_2 and total (30 Torr) pressures, but at different repetition rates of the photolysis and probe lasers as indicated in the inset. The black data are the differences between the 2 Hz and 1 Hz measurements.

Total volumetric flow rates of 50 to 500 sccm were used for experiments conducted at different pressures. The cross section of the flow in the middle of the flow tube should be the product of the tube diameter (6 cm) and the sample length (< 40 cm, as measured at different total pressures). The linear flow velocity in the middle of the flow tube can be calculated by dividing the total flow rate by the flow cross section in the middle of the flow tube. Linear flow velocities of 12.5 and 125 cm s⁻¹ are

obtained for 50 and 500 sccm volumetric flow rates respectively. The flow of gas follows a path at an approximately 45 degree angle to the probe axis. Thus, the components of the linear flow velocities normal to the detection axis are 8.8 and 88 cm s⁻¹ based on geometric arguments. To cross the 5-mm photolysis beam requires 56 and 5.6 ms at 50 and 500 sccm volumetric flow rates respectively. Both time durations are much larger than the interrogation time interval for our $CH_2OO + SO_2$ experiments, and thus mass flow should not have any effect on the pseudo rates obtained. For the $CH_2OO + CH_2OO$ experiments, decay traces were obtained over 10 ms time intervals and they could be affected by fast flow rates at higher pressure. However, no first order contribution was observed in the CH_2OO decay traces. Thus, we conclude that mass flow should not have any significant effect on the removal of CH_2OO in our experiments.

Effects of initial CH₂OO concentration on measured rate coefficients

Figure S3 shows the k values, obtained from fits of CH₂OO decay traces to equation (18), as a function of initial CH₂OO concentration. The change in ring-down rate, $\Delta \kappa$, is directly proportional to absorbance and hence to concentration. The initial concentration of CH₂OO was varied by changing the partial pressure of CH₂I₂ in the flow tube. At low initial concentration ($\Delta \kappa$ <25000 s⁻¹), the R² values of second order decay fits to the time-dependent CH₂OO absorbance were <0.97. We expect physical loss mechanisms like diffusion and mass flow to contribute significantly to the overall CH₂OO loss in this concentration regime, which results in high effective k values and poor fit quality. At high initial concentrations ($\Delta \kappa$ >75000 s⁻¹), the R² values are > 0.99 and k is constant as a function of initial concentration. Second order loss processes like CH₂OO self-reaction are the dominant removal mechanism under such conditions. At these higher initial concentrations, >90% of the signal decayed by a time delay of 10 ms. Effects of diffusion and mass flow are expected to be minimal over such time scales in the experiments (see above), and two pieces of evidence support this expectation under these experimental conditions: (i) plots of CH₂OO concentrations against time show pure second-order decay behaviour with negligible first order contributions; (ii) the rate coefficients derived from analysis of these time-dependent concentrations do not change with value of the initial concentration. For different total pressure conditions, the CH₂OO concentrations were varied such that an R² value > 0.99 was obtained for all the reported second order decay fits to the observed decay traces. The high initial absorbance limit k' value of 8.8 x 10⁶ cm/s is greater than the value (8.24 ± 0.1) x 10⁶ cm/s presented in the main text for the same total pressure conditions because no background interference correction (explained in detail in the next section) was performed for this value. Background correction (particularly for the depletion of CH₂I₂ absorption by photolysis) becomes important with higher CH₂I₂ concentrations to obtain absolute k' values, but the qualitative relative trend shown in Figure S3 is not expected to change significantly as shown by the three k' values at the highest initial absorbances.

Figure S3. k' dependence on initial $\Delta \kappa$, which is directly proportional to CH₂OO concentration. k' values were obtained from second order fits to the CH₂OO decay traces and the error bars are 1 σ values from the fits. All decay traces were obtained at same O₂ and total (7 Torr) pressures, no SO₂ and various CH₂I₂ pressures. 8.8 x 10⁶ cm s⁻¹ is the weighted average k' value at the three highest initial $\Delta \kappa$ values. The inset shows an expanded view of the last three data points.

Spectral interferences and background subtraction

Various molecules other than CH_2OO can absorb the 355 nm probe wavelength, and most relevant to the current study are likely to be IO, HCHO, CH_2I_2 and ICH_2OO . Background absorption of the 355 nm light by the precursor CH_2I_2 (absorption cross section 1.92 x 10^{-19} cm² molecule⁻¹) ¹ was subtracted in the current measurements by taking the difference between data sets obtained with and without the photolysis laser. This method is referred to here as photolysis laser on – off. This method should also subtract out baseline losses from the cavity mirrors and the scattering of the probe light by the gas molecules inside the cavity.

HCHO is a possible product of $CH_2OO + I$ reaction and CH_2OO self-reaction, and its concentration could be around a factor of 2 larger than the CH_2OO concentration. The HCHO cross section at 355 nm, 9.61 x 10⁻²¹ cm² molecule⁻¹, is more than 3 orders of magnitudes smaller than the CH_2OO cross section, which is on the order of 10⁻¹⁷ cm² molecule⁻¹.²⁻⁵ Thus, we do not expect significant interference from HCHO.

The ICH₂OO absorption cross-section is not well known at 355 nm because of possible interference from CH₂OO in previous work. The yield of ICH₂OO is expected to rise with increasing pressure, with a maximum value of ~ 0.25 compared to CH₂OO production at 30 Torr, and thus could interfere in absorption measurements at 355 nm.⁶ ICH₂OO interference is expected to be largest at short time delays and then decay due to reaction with CH₂OO or with itself.

Figure S4 shows photolysis laser on – off traces with and without SO₂ (1.6×10^{16} molecule cm⁻³). At such a high SO₂ concentration, a pseudo first order half-life for CH₂OO of around 1 µs is expected based on previously reported CH₂OO + SO₂ bimolecular reaction rate coefficients.² This half-life is much smaller than the time steps (200 µs) used to obtain the decay traces. ICH₂OO is not expected to react quickly with SO₂. Thus, the signal depletion between the two traces shown in Figure S4 should be mostly from consumption of CH₂OO. However, the photolysis laser on – off trace in the presence of high SO₂ concentration shows a small negative signal. Within the signal-to-noise ratio of the trace, this depletion signal does not show any time dependence. Thus, it should be mainly from the depletion

of the CH_2I_2 background absorption due to photo-dissociation. Photolysis laser on – off traces taken without SO_2 or with low SO_2 concentration were subtracted from photolysis laser on – off traces taken in the presence of a high SO_2 concentration for all the CH_2OO decay traces (for $CH_2OO + CH_2OO$ and $CH_2OO + SO_2$ rate determination) before fitting. This approach should remove any possible spectral interference from ICH_2OO absorption and CH_2I_2 depletion by photolysis.

Figure S4. Laser photolysis on - off traces obtained with and without addition of SO₂. Both traces were taken at the same CH_2I_2 , O_2 and total (20 Torr) pressures.

This background correction procedure does not eliminate interference from IO which is a product of $CH_2OO + I$ reaction. The IO absorption cross section at 355 nm, 1.85 x 10^{-18} cm² molecule⁻¹⁷, is 5-10 times smaller than that for CH_2OO and could interfere in absorption measurements at longer time delays when the CH_2OO concentration is low. To test for IO interference, we examined the CH_2OO decay traces for signs of a growing absorption at later time delays. The k' decay rate coefficient values obtained from the fits performed for background corrected decay traces with fitting windows spanning from 200 µs to 5 ms ($k' = (12.04 \pm 0.21) \times 10^6$ cm s⁻¹) and 200 µs to 10 ms ($k' = (12.20 \pm 0.16) \times 10^6$ cm s⁻¹) are within the error of the fits. This good agreement suggests that the spectral interference from IO is insignificant on a 10 ms timescale under our experimental conditions. Similar analysis performed for decay traces obtained at different total pressures also showed no significant

IO contribution. This absence of IO interference is because of the lower absorption cross section for IO compared to CH_2OO at 355 nm, as well as the slower rate of formation of IO.

Pressure dependence of k' for the CH₂OO self-reaction

Figure 2 of the main manuscript shows an observed dependence of k' on the pressure of N₂ in the flow tube. We attribute this pressure dependence to changes in the yield of ICH₂O₂ radicals following photolysis of CH₂I₂ in the presence of O₂. Higher pressures of bath gas promote branching to ICH₂O₂ which is in competition with I-atom elimination to form CH₂OO.

We have modelled the pressure dependence of the bimolecular reaction rate coefficient for the selfreaction, as plotted in figure 2, using the following scheme:

$$CH_2OO + CH_2OO \rightarrow Product 1$$
 k_8
 $CH_2OO + ICH_2O_2 \rightarrow Product 2$ k_{12}

$$CH_2OO \rightarrow Product 3$$
 k_e

In the model, we fixed the values of k_8 and k_6 to the self-reaction (7.35 x 10⁻¹¹ cm³ molecule⁻¹ s⁻¹) and unimolecular reaction (11.6 s⁻¹) rate coefficients determined in this study. We used (pressure dependent) ICH₂OO yields from the recent paper by Huang *et al.*⁸ Table S3 reports the values of k_{12} we obtain to account for the pressure-dependent self-reaction rates.

Total Pressure / Torr	k_{12} / 10 ⁻¹⁰ cm ³ molecule ⁻¹ s ⁻¹		
7	2.90		
10	2.95		
15	2.88		
20	2.91		
25	3.15		
30	3.72		

Table S3 Rate coefficients for the $CH_2OO + ICH_2O_2$ reaction estimated from the pressure-dependence of k' (figure 2).

The k_{12} values are larger than those suggested by Vereecken *et al.*⁹ for peroxy radical + Criegee intermediate reactions by analogy with other barrierless association reactions. However, they agree well with the $k = 2.23 \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ value computed for the analogous HO₂ + CH₂OO reaction by Long *et al.*¹⁰ using transition state theory with *ab initio* calculated potential energies and structures. We estimate a limiting capture rate coefficient for the ICH₂O₂ + CH₂OO reaction of 8 x 10^{-10} cm³ molecule⁻¹ s⁻¹ because of long-range attractive dipole-dipole interactions between the polar ICH₂O₂ and CH₂OO. In this calculation, we used dipole moments of 2.7 D for ICH₂O₂ and 4.5 D for CH₂OO. The capture rate coefficient provides an expected upper limit for this barrierless reaction, and is a factor of at least two larger than our derived k_{12} values.

The apparent increase in k_{12} with pressure (Table S3) may simply be a consequence of Product 2 being a peroxy radical that can further react with CH₂OO, with higher pressures promoting ICH₂O₂ and hence Product 2 formation. To test this hypothesis, we extended the model above to include further reaction of Product 2 with CH₂OO, and assumed a rate coefficient for this peroxy radical + Criegee intermediate reaction similar to that for the ICH₂O₂ + CH₂OO reaction. With this assumption, we obtain satisfactory fits to our observed pressure dependent rate coefficients plotted in figure 2, and an average rate coefficient for peroxy + CH₂OO somewhere in the range 0.7 – 2.6 x 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹, with a best-estimate average of 1.5 x 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹.

CH₂OO + SO₂ reaction rate fitting procedures

The reaction rate of CH₂OO with SO₂ was obtained for SO₂ concentrations ranging from 4 x 10¹³ to 2 x 10¹⁴ molecule cm⁻³. A reaction rate is desirable that is high enough to obtain pseudo first order reaction rate coefficients with the effects of processes like diffusion minimized. The temporal resolution of the current CRDS experiment ($\leq 10 \ \mu$ s, as determined by the ring-down time) limits the observation of reaction rates to half-lives $\geq 100 \ \mu$ s. A maximum value of the pseudo first order rate coefficient of around 8000 s⁻¹ was obtained at the highest SO₂ concentration, which corresponds to a minimum half-life of around 90 μ s. The reaction rate at the lowest SO₂ concentrations used

corresponds to a pseudo first order rate coefficient of around 2000 s⁻¹. Under low reaction rate conditions, contributions from side reactions like the CH_2OO self-reaction can be important.

Figure S5 shows the k_4 values corresponding to the CH₂OO + SO₂ bimolecular reaction rate coefficient, obtained from linear fits to pseudo first order rate coefficients derived with and without inclusion of the self-reaction in the kinetic model. These two sets of values agree within the error of the fits due to the robustness of the pseudo first order approximation in the SO₂ concentration range used. However, the k_4 value obtained with inclusion of the second order contribution in the analysis is slightly larger and the correction is expected to increase at lower SO₂ concentration values used in previously published studies of the CH₂OO + SO₂ reaction. Inclusion of a second-order contribution is also important to obtain the intercept value in the fit which is related to the unimolecular loss of CH₂OO. The intercept value obtained from a model including second-order loss is smaller by an amount outside the bounds of uncertainties of the two measurements. The contribution from the second-order mechanism is expected to increase under higher pressure conditions because the $k^{'}$ value increases with pressure. All the k_4 values reported in this work take the second-order contribution to the loss of CH₂OO into account in the analysis of experimental data.

Figure S5. $CH_2OO + SO_2$ bimolecular reaction rate coefficients, k_4 , obtained using pseudo first order rates derived from either first-order (red) or simultaneous first and second-order (black) fits to CH_2OO decay trace. Error bars are 1 σ value of the individual fits to obtain pseudo first-order rates. The slope of the fitted line gives the bimolecular reaction rate coefficient whereas the intercept value is related to the unimolecular loss of CH_2OO . The decay traces used for the rate analysis were taken at 10 Torr total pressure. Plot (I) is for the higher end of our SO_2 concentration range, where bimolecular reactions with CH_2OO dominate, and plot (II) is for the lower part of the SO_2 concentration range

At low SO_2 concentration, an effective increase in the CH_2OO + SO_2 reaction rate coefficient was observed. To analyse these observations, we propose a mechanism in which collision with SO_2 can reversibly catalyse CH₂OO isomerization. The calculations of Vereecken et al. suggest that singlet bisoxy (SBO) radical might be the isomerization path in question, although the reverse reaction to CH₂00 is calculated to be significantly endothermic. One alternative candidate for the isomeric form (denoted *Isomer* in our generalized scheme) is a triplet state biradical (of CH_2OO , bisoxy, or perhaps another structurally distinct species). The calculations of Vereecken et al. identify that in the vicinity of the OCH₂OS(0)O biradical intermediate, singlet-triplet splittings are as small as 0.4 kJ mol⁻¹; this, or another region of near-degeneracy could favour promotion of efficient biradical intersystem crossing (ISC) in the presence of SO_2 . The [SO₂] dependence of the pseudo first-order reaction rate coefficients can then be explained by the set of reactions below. Reactions S3 and S4 show the reversibly catalysed isomerization or ISC of CH₂00 by SO₂. We note that the calculations of Vereecken et al. suggest the reverse step from singlet isomers such as SBO will be substantially endothermic and therefore unlikely, but also that the single-reference methods of calculation employed in that study are inferior to multireference methods for biradical species such as CH_2OO and SBO (as discussed by the authors of ref [9]). ISC is plausibly reversible via the initially encountered, or another region of near-degeneracy of singlet and triplet states. In the absence of an alternative mechanism to account for our observations, we are therefore forced to propose the reversibility of this isomerization/ISC process, and therefore to question the accuracy of the published electronic structure calculations, or encourage calculation of triplet biradical reaction pathways. Reaction S5 shows the unimolecular dissociation of the isomer, for example to formic acid. Reaction S6 shows the CH_2OO + SO_2 bimolecular reaction leading to products such as SO_3 + HCHO. Reaction S7 shows the unimolecular dissociation of CH_2OO in the absence of SO_2 . Reactions S6 and S7 are labelled as reaction 4 and 6, respectively in the main text.

$$CH_200 + SO_2 \rightarrow Isomer + SO_2 \tag{S3}$$

$$Isomer + SO_2 \rightarrow CH_2OO + SO_2 \tag{S4}$$

$$Isomer \rightarrow Product$$
 (S5)

 $CH_2OO + SO_2 \rightarrow HCHO + SO_3 \tag{S6}$

$$CH_2OO \rightarrow Product$$
 (S7)

$$CH_2OO + CH_2OO \rightarrow Products$$
 (S8)

The change in $[CH_2OO]$ is given by

$$\frac{d[CH_2OO]}{dt} = -(k_{S3} + k_{S6})[CH_2OO][SO_2] + k_{S4}[Isomer][SO_2] - k_{S7}[CH_2OO] -$$
(S9)

Using the steady state approximation (valid for *Isomer* as an intermediate when $k_{S3}[CH_2OO][SO_2] \approx k_{S4}[Isomer][SO_2] + k_{S5}[Isomer]_{j,} [Isomer]$ is obtained as

$$[Isomer] = \frac{k_{S3}[CH_2OO][SO_2]}{k_{S4}[SO_2] + k_{S5}}$$
(S10)

Combining Equations (S9) and (S10) gives an equation analogous to equation (20) of the main text:

$$\frac{d[CH_2OO]}{dt} = -2k_{S8}[CH_2OO]^2 - k_{eff}[CH_2OO]$$
(S11)

with

$$k_{eff} = \frac{\left(k_{S5}(k_{S3} + k_{S6}) + k_{S6}k_{S4}[SO_2]\right)[SO_2]}{k_{S4}[SO_2] + k_{S5}} + k_{S7}$$
(S12)

Here, k_{eff} is identified as being equivalent to k_{pseudo} in the main text.

At large [SO₂], k_{S4} [SO₂] >> k_{S5} so k_{S6} k_{S4} [SO₂] >> k_{S6} k_{S5}

$$k_{eff} = k_{S6}[SO_2] + \frac{k_{S5}k_{S3}}{k_{S4}} + k_{S7}$$
(S13)

 $[SO_2]$ is not expected to change significantly during the course of the reaction and thus the pseudo first order approximation should be valid. $k_{S5}k_{S3}/k_{S4}$ is the high pressure limiting value for the collisionally activated rate coefficient.

For small [SO₂], k_{S4} [SO₂] << k_{S5}

$$k_{eff} = (k_{S3} + k_{S6})[SO_2] + k_{S7}$$
(S14)

Thus, both SO₂-catalysed isomerization/ISC and bimolecular reaction contribute to the k_{eff} value at low [SO₂]. The CH₂OO isomerization/ISC pathway does not destroy SO₂ and the change in [SO₂] during the course of overall reaction depends on the relative values of k_{S3} and k_{S6} . For $k_{S3} \gtrsim k_{S6}$ change in [SO₂] should be relatively small and thus a pseudo first order approximation could still be valid for the overall reaction. Our numerical modelling confirms this to be the case.

This model can be further extended to allow the $Isomer + SO_2$ reaction to produce $HCHO + SO_3$ (if *Isomer* remains a singlet species, or there is further ISC back to the singlet PES):

$$Isomer + SO_2 \rightarrow HCHO + SO_3 \tag{S15}$$

If this reaction pathway is open, a steady-state analysis gives

$$k_{eff} = \frac{\left(k_{S5}(k_{S3} + k_{S6}) + \left(k_{S6}k_{S4} + k_{S6}k_{S15} + k_{S3}k_{S15}\right)\left[SO_2\right]\right)\left[SO_2\right]}{\left(k_{S4} + k_{S15}\right)\left[SO_2\right] + k_{S5}} + k_{S7}$$
(S16)

At large $[SO_2]$, equation (S16) reduces to:

$$k_{eff} = \frac{\left(k_{S6}k_{S4} + k_{S6}k_{S15} + k_{S3}k_{S15}\right)\left[SO_2\right]}{\left(k_{S4} + k_{S15}\right)} + \frac{k_{S5}\left(k_{S3} + k_{S6}\right)}{\left(k_{S4} + k_{S15}\right)} + k_{S7}$$
(S17)

suggesting that in the high [SO₂] regime, the gradient of the pseudo first-order plot is not simply k_{S6} unless $k_{S15} \ll k_{S4}$.

At small [SO₂], equation (S16) becomes

$$k_{eff} = (k_{S3} + k_{S6})[SO_2] + k_{S7}$$
(S18)

To test the validity of our analytical solutions to the above kinetic model, which invoke the steadystate approximation, we also carried out numerical fits for the low SO_2 concentration data using a k_4 value obtained from the high SO_2 concentration fits, as described by the model shown below:

CH₂OO + CH₂OO → Product 1
$$k_{obs}$$
 (fixed at 1.06 x 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹)
CH₂OO + SO₂ → Product 2 k_4 (fixed at 3.93 x 10⁻¹¹ cm³ molecule⁻¹ s⁻¹)

$$CH_2OO \rightarrow Product 3$$
 k_{uni} (floated)

The k_{obs} value was fixed to the effective CH₂OO second order loss rate coefficient value at 10 Torr total pressure. The k_4 value was fixed to the slope value of the linear fit obtained for the pseudo first order rate values at the four highest SO₂ concentrations at 10 Torr total pressure. The values of k_{uni} obtained by this numerical analysis are plotted in Figure S6 as a function of SO₂ concentration, and the low- SO₂ concentration regime is fitted to a straight line. Comparison with equation (S18) shows that the gradient of this line should be equal to k_{s3} because k_{s6} has already been included in the numerical fits, and we observe excellent agreement in the k_{s3} values obtained by the two analysis methods {(3.53 ± 0.32) × 10⁻¹¹ and (3.87 ± 0.31) × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹}.

There is a contribution from the CH₂OO unimolecular loss process on top of the CH₂OO + SO₂ reaction that depends on [SO₂]. This observation and our numerical modelling of reaction rates at low [SO₂] (see later) indicate that the curvature is not simply attributable to transition from a first to second order process (in part because the self-reaction rate of CH₂OO exceeds that of CH₂OO + SO₂). Moreover, we suggest that there is evidence of similar curvature in the data of Sheps,² as shown in figure S7. Comparison with the analytical kinetic model suggests that in the high [SO₂] limit, $k_{uni} =$

 $\frac{k_{S5}k_{S3}}{k_{S4}} + k_{S7}$ (see equation (S13)) whereas as $[SO_2] \rightarrow 0$, $k_{uni} \rightarrow k_{S7}$ (or, more precisely, an upper limit for k_{S7} because of small contributions from diffusion and mass flow to the unimolecular loss of

CH₂OO). The intercept value obtained from the linear fit of the low SO₂ concentration k_{uni} values is 16 ± 9 s⁻¹ which agrees with the values obtained by analytical fitting (e.g. see figure S5). The k_{uni} values obtained from numerical fits using the FACSIMILE program are listed in Table S5.

Figure S6. Dependence of the unimolecular decomposition rate coefficient for CH_2OO on $[SO_2]$ as derived from numerical fits to $CH_2OO + SO_2$ kinetic data.

Figure S7. Comparison of pseudo first order rate coefficients for the CH₂OO + SO₂ reaction from the current work (black circles), and from the study by Sheps [Ref. 2] (blue triangles).

In support of our interpretation of behaviour special to SO_2 , we note that our very recent studies of reactions of CH_2OO with organic acids (under the same flow and pressure conditions as we used for the $CH_2OO + SO_2$ study) do not show curvature of the pseudo first order plots at the lower end of the organic acid concentration range. Moreover, the intercepts of these plots give a unimolecular loss that is $\leq 11.6 \text{ s}^{-1}$, not the 700 s⁻¹ we would obtain from the $CH_2OO + SO_2$ data without our more complete kinetic analysis. These experimental data will be published elsewhere. The chemistry of

 $CH_2OO + SO_2$ is much more complex than the published pseudo first-order kinetic studies have so far recognized and we propose a plausible hypothesis here that brings the unimolecular decay rate coefficients into much better agreement with theory.

Reaction rate coefficients as a function of total pressure

Table S4. $CH_2OO + CH_2OO$ reaction rate coefficient scaled by CH_2OO absorption cross section, $k' = k_{obs}/\sigma_{355nm}$, $CH_2OO + SO_2$ reaction rate coefficient, k_4 , and the intercept from the linear fit 1 as shown in figure 8 as a function of total pressure (balance N₂).

Total Pressure (Torr)	k' (10 ⁶ cm s-1)	<i>k</i> ₄ (10 ⁻¹¹ cm ³ molecule ⁻¹ s ⁻¹)	Intercept from linear fit 1 (s ⁻¹)
7	8.24±0.09		
10	9.37±0.13	3.93±0.13	629±147
15	10.6±0.09	3.99±0.12	695±125
20	12.20±0.16	3.73±0.05	736±58
25	13.31±0.16	3.92±0.15	581±186
30	14.31±0.23	4.06±0.24	549±281

Table S5. First-order CH_2OO loss rates used to generate Figure S5 and Figure S6. $k_{pseudo1}$, $k_{pseudo2}$ and k_{uni} were obtained from first order, simultaneous first + second order and FACSIMILE fits respectively.

[SO ₂] (10 ¹² molecule cm ⁻³)	k _{pseduo1} (s ⁻¹)	k _{pseduo2} (s ⁻¹)	<i>k_{uni}</i> (s⁻¹)
1.08	436 ± 21	92 ± 6	56 ± 5
2.16	564 ± 25	171 ± 7	100 ± 6
4.32	775 ± 26	349 ± 12	199 ± 10
6.48	929 ± 29	482 ± 16	252 ± 13
8.64	1054 ± 27	613 ± 20	301 ± 17
8.64	1226 ± 28	649 ± 21	345 ± 17
13.0	1496 ± 19	902 ± 21	429 ± 18
17.3	1782 ± 24	1203 ± 28	565 ± 24
21.6	1953 ± 31	1396 ± 36	595 ± 31
25.9	2181 ± 37	1627 ± 41	656 ± 35
25.9	1973 ± 30	1530 ± 35	545 ± 30
30.2	2193 ± 39	1787 ± 47	606 ± 39
34.6	2361 ± 27	1939 ± 37	636 ± 33
38.9	2658 ± 29	2259 ± 42	767 ± 36
43.2	2750 ± 27	2361 ± 38	543 ± 27
43.2	2662 ± 21	2194 ± 31	705 ± 32
86.4	4555 ± 59	4037 ± 69	693 ± 58
130	6287 ± 125	5616 ± 137	580 ± 114
173	8263 ± 159	7550 ± 182	798 ± 151
216	9896 ± 310	9035 ± 342	590 ± 326

Numerical modelling of the CH₂OO + SO₂ reaction at low [SO₂]

Numerical simulations were performed for reaction of CH₂OO with SO₂ at low SO₂ concentration using FACSIMILE to test the validity of a pseudo first order approximation in regimes where the concentrations of SO₂ and CH₂OO are comparable. The approximation is robust only if the concentration of SO₂ does not change significantly over the course of our measurements. Simulations were performed for different initial [SO₂] with fixed values of the initial concentration of CH₂OO + CH₂OO corresponding to experimental values. Rate coefficients for the CH₂OO + SO₂ and CH₂OO + CH₂OO reactions were chosen that are appropriate for 10 Torr, using values determined in this work (k_4 = 3.93 x 10⁻¹¹ cm² molecule⁻¹ and k_{obs} = 1.06 x 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹). Figure S7 shows concentration profiles of all the chemical species involved in the reactions for the lowest initial [SO₂] value used in our experiments (1.08 × 10¹² cm⁻³).

Similar simulations were carried out for other initial SO_2 concentrations and the results are summarized in Table S6. In all cases, use of a pseudo first order approximation is validated; the fast CH_2OO self-reaction rate ensures only small changes in [SO₂]. The simulated time-dependences of [CH_2OO] fit very well to combined first and second order decay terms, as used in our experimental data fitting.

Table S6. Changes in SO₂ concentration obtained from numerical simulations of the $CH_2OO + SO_2$ reaction system for different initial concentrations of SO₂ under conditions typical of our experiments. The pseudo first-order rate coefficients obtained for $CH_2OO + SO_2$ reaction are also listed.

Initial $[SO_{2}] / 10^{12} \text{ cm}^{-3}$	1 08	2 16	4 32	8 64
	1.00	2.10	1.52	0.01
Final [SO ₂] / 10 ¹² cm ⁻³	0.71	1.45	3.04	6.55
	-	_		
Change / %	24	22	27	24
Change / 70	54	55	27	Z4
k / s^{-1}	33 85 + 0 37	68 03 + 0 70	1392+013	2913+21
Npseudo / S	55.05 ± 0.57	00.05 ± 0.70	$135.2 \pm 0.1.3$	251.5 - 2.1
Final [SO ₂] / 10 ¹² cm ⁻³ Change / % k _{pseudo} / s ⁻¹	0.71 34 33.85 ± 0.37	1.45 33 68.03 ± 0.70	3.04 27 139.2 ± 0.1.3	6.55 24 291.3 ± 2.1

Figure S8. Top: Simulated changes in concentration of key species in the $CH_2OO + SO_2$ reaction system for an initial concentration of SO_2 of 1.08 x 10^{12} cm⁻³ and an initial concentration of CH_2OO typical of our experimental conditions. Bottom: Fit of the simulated CH_2OO decay profile to analytical first and second order kinetic functions.

References

- S. P. Sander, J. Abbatt, J. R. Barker, J. B. Burkholder, R. R. Friedl, D. M. Golden, R. E. Huie, C. E. Kolb, M. J. Kurylo, G. K. Moortgat, V. L. Orkin and P. H. Wine, National Aeronautics and Space Administration, Jet Propulsion Laboratory California Institute of Technology Pasadena, California 2011, pp. 4H-15.
- 2. L. Sheps, J. Phys. Chem. Lett., 2013, 4, 4201-4205.
- 3. W. L. Ting, Y. H. Chen, W. Chao, M. C. Smith and J. J. M. Lin, *Phys. Chem. Chem. Phys.*, 2014, **16**, 4039-4049.
- 4. J. M. Beames, F. Liu, L. Lu and M. I. Lester, J. Am. Chem. Soc. , 2012, **134**, 20045-20048.
- S. P. Sander, J. Abbatt, J. R. Barker, J. B. Burkholder, R. R. Friedl, D. M. Golden, R. E. Huie, C. E. Kolb, M. J. Kurylo, G. K. Moortgat, V. L. Orkin and P. H. Wine, National Aeronautics and Space Administration, Jet Propulsion Laboratory California Institute of Technology Pasadena, California2011, pp. 4D-5.
- 6. D. Stone, M. Blitz, L. Daubney, T. Ingham and P. Seakins, *PCCP*, 2013, 19119-19124.
- S. P. Sander, J. Abbatt, J. R. Barker, J. B. Burkholder, R. R. Friedl, D. M. Golden, R. E. Huie, C. E. Kolb, M. J. Kurylo, G. K. Moortgat, V. L. Orkin and P. H. Wine, National Aeronautics and Space Administration, Jet Propulsion Laboratory California Institute of Technology Pasadena, California2011, pp. 4H-5.
- 8. H. Huang, A. J. Eskola and C. A. Taatjes, *J. Phys. Chem. Lett.*, 2012, **3**, 3399-3403.
- 9. L. Vereecken, H. Harder and A. Novelli, *Phys. Chem. Chem. Phys.*, 2012, **14**, 14682-14695.
- B. Long, X.-F. Tan, Z.-W. Long, Y.-B. Wang, D. S. Ren and W.-J. Zhang, J. Phys. Chem. A, 2011, 115, 6559-6567.