Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Electronic Supplementary Information

Complexation mechanism of cucurbit[6]uril with hexamethylene diammonium cations in saline solution

Peng Liu,^{*a,b*} Xueguang Shao,^{*a,b,c*} Christophe Chipot,^{*d,f,e*} and Wensheng Cai^{*b,c,**}

^a State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China

^c Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China

^{*d*} Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana–Champaign, Unité Mixte de Recherche Nº. 7565, Université de Lorraine, B.P. 70239, 54506 Vandœuvre–lès–Nancy cedex, France

^e Theoretical and Computational Biophysics Group, Beckman Institute, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States

^f Department of Physics, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States

Simulation Details

The simulation systems were consisted of two kinds of molecules, viz. the sodium ion and hexamethylene diammonium (HD²⁺), binding to cucurbit[6]uril (CB[6]). The initial coordinate of CB[6] was taken from three–dimensional crystal structure.¹ Four systems have been constructed to study the following processes. CB[6] successively binds with two sodium ions, resulting in two complexes, viz. CB[6]:Na⁺ and CB[6]:(Na⁺)₂. Furthermore, CB[6] binding with HD²⁺ in the present and absent of one sodium ion were investigated, either. The four systems were immersed in a water box, 49.99 × 49.99 × 49.92 Å³, respectively. The number of atoms and simulation time for each system has been gathered in Table S1.

All simulations were performed with the MD program NAMD2.9.² CHARMM General force field parameters^{3,4} have been used to represent the alkyldiammonium moiety, CB[6] and Na⁺. The TIP3P model⁵ was used for water. The temperature and the pressure were maintained at 313 K and 1 atm, respectively, employing Langevin dynamics and the Langevin piston method.⁶ Long–range electrostatic forces were taken into account by means of the particle–mesh Ewald (PME) approach,⁷ van der Waals interactions were truncated smoothly by mean of a 12–Å spherical cutoff with a switching function applied beyond 10 Å. The equations of motion were integrated with a time step of 2.0 fs, employing the multiple time step r–RESPA algorithm. Covalent bonds involving hydrogen atoms were constrained to their equilibrium value by means of the SHAKE/RATTLE algorithms,^{8,9} except for water, for which the SETTLE algorithm was applied.⁹ Periodic boundary conditions were applied in three directions of Cartesian space. Analysis and visualization of MD trajectories were performed with VMD.¹⁰

	$CB[6] - Na^+$	$CB[6]:Na^+ - Na^+$	$CB[6] - HD^{2+}$	$CB[6]:Na^+ - HD^{2+}$
Number of atoms	11669	11650	11689	11631
Pathway (Å)	$0.0 \le \eta \le 10.0$	$2.0 \le \eta \le 10.0$	$0.0 \le \eta \le 12.0$	$-2.0 \le \eta \le -7.0, \\ 5.0 \le \xi \le 12.0;$
				$-3.0 \le \eta \le -7.0,$ $0.0 \le \zeta \le 7.0$
Simulation time (ns)	40	56	128	288 192

TABLE S1. Detailed information about molecular simulations.

Figure S1. Variations of the distance between the barycenter of CB[6] and Na⁺ obtained from additional 10–ns MD simulations for the CB[6]:Na⁺ and CB[6]:(Na⁺)₂ complexes in (A) Figure 1C and (B) Figure 1E.

Figure S2. Time evolution of the root-mean-square deviation over the gradients of free-energy surfaces characterizing (A) the first and (B) the second stage of the binding process between CB[6]:Na⁺ with HD²⁺.

REFERENCES

- Kim, Y.; Kim, H.; Ko, Y. H.; Selvapalam, N.; Rekharsky, M. V.; Inoue, Y.; Kim, K. Complexation of Aliphatic Ammonium Ions with a Water–Soluble Cucurbit[6]uril Derivative in Pure Water: Isothermal Calorimetric, NMR, and X–Ray Crystallographic Study. *Chem. Eur. J.* 2009, 15, 6143–6151.
- Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. *J. Comput. Chem.* 2005, 26, 1781–1802.
- (3) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 1998, 102, 3586–3616.
- (4) Hatcher, E. R.; Guvench, O.; MacKerell, A. D. CHARMM Additive All-Atom Force Field for Acyclic Polyalcohols, Acyclic Carbohydrates, and Inositol. *J. Chem. Theory Comput.* **2009**, *5*, 1315–1327.
- (5) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. *J. Chem. Phys.* **1983**, *79*, 926–935.
- (6) Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R. Constant Pressure Molecular Dynamics Simulation: The Langevin Piston Method. *J. Chem. Phys.* **1995**, *103*, 4613–4621.
- (7) Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N*Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. **1993**, 98, 10089–10092.
- (8) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of *n*-Alkanes. *J. Comput. Phys.* **1977**, *23*, 327–341.
- (9) Miyamoto, S.; Kollman, P. A. SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models. *J. Comput. Chem.* **1992**, *13*, 952–962.
- (10) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38.

The complete ref. 19 in the paper:

(19) A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin and M. Karplus, *J. Phys. Chem.* B, 1998, **102**, 3586.