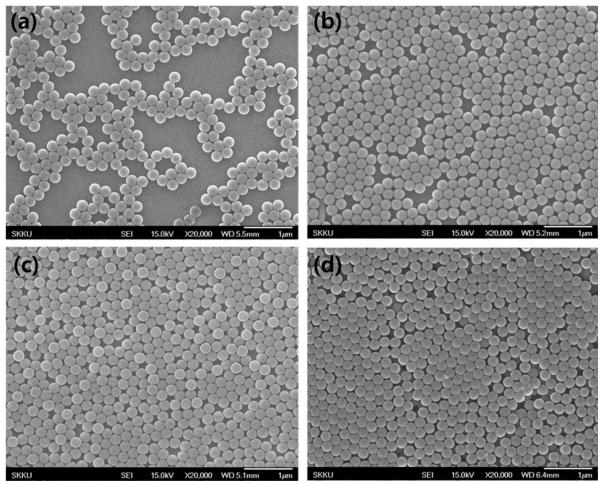
Supporting information

Flexible insulator of hollow SiO_2 spheres and polyimide hybrid for flexible OLED

Min Kyu Kim,^a Dong Won Kim,^b Dong Wook Shin,^a Sang Joon Seo,^a Ho Kyoon Chung^a and Ji Beom Yoo^{*a,b}

^a SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon
440-746, South Korea


^b School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon
440-746, South Korea

Corresponding Author

* Prof. J. Yoo, jbyoo@skku.edu

Figure S1 Shows the effect of variation of the hollow SiO_2 spheres and PI ratio was observed by changing PS beads solution concentration and O_2 RIE treatment. In the experiment, PS beads solutions with 0.21, 0.6, 0.75 and 0.75wt% (O_2 RIE treated substrate) were spin coated at 2000rpm and volume fraction of each samples are 0.13, 0.23, 0.32 and 0.42 respectively.

Kim et. al.

Figure S1. (a) SEM image of PS beads with 0.21wt% PS solution. (b) SEM image of PS beads with 0.6wt% PS solution. (c) SEM image of PS beads with 0.75wt% PS solution on O2 RIE treated substrate.

Figure S2 shows relation between the volume fraction of hollow SiO_2 spheres and dielectric constant of hybrid film. The volume fractions of hollow SiO_2 spheres are 0.13, 0.23 and 0.32 have the values of dielectric constant which are 3.18, 2.68 and 1.98 respectively. The hollow SiO_2 spheres and polyimide hybrid film having 0.42 volume fraction was collapsed by tiny external force. PS beads stacked 2 layers after spin coating on O_2 RIE treated substrate and SiO_2 cannot cover bottom of PS beads during ALD process.

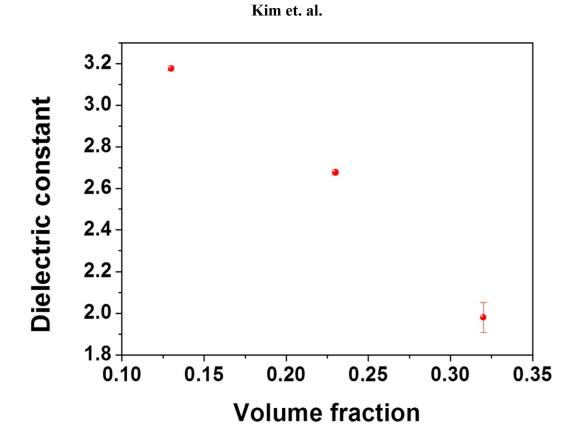


Figure S2. The volume fraction of hollow SiO₂ spheres versus dielectric constant of hybrid film.