## Supplementary Information for

# Unravelling the Impact of Hydrocarbon Structure on the Fumarate Addition Mechanism – a Gas Phase *ab-initio* Study

*Vivek S. Bharadwaj<sup>‡</sup>*, *Shubham Vyas<sup>‡,#</sup>*, *Stephanie M. Villano<sup>‡</sup>*, *C. Mark Maupin<sup>‡</sup>*, *Anthony M.* 

Dean<sup>‡</sup>\*

<sup>‡</sup>Chemical and Biological Engineering Department, Colorado School of Mines, 1500 Illinois

Street, Golden, CO 80401

<sup>#</sup>Department of Chemistry and Geochemistry, Colorado School of Mines, 1500 Illinois Street,

Golden CO 80401

Corresponding Author

\* To whom correspondence should be addressed: AMD, email: <u>amdean@mines.edu</u>, PHONE: 303-273-3643, FAX: 303-273-3730;

**Funding Sources** 

ONR MURI Grant N00014-10-1-0946

#### Section 1: Potential Energy Surfaces



Scheme 1: Workflow for electronic structure calculations.



Figure S1: Reactant complex structures for step 1 (Initial H-Abstraction) in the case of toluene (left) and butane (right). Potential non-covalent interactions between the sulfur atom and hydrogen atoms of the hydrocarbon are indicated with dashed lines. The atomic indexes correspond to the heavy atoms as listed in Section S1.1 for toluene (Table S1) and butane (Table S2)

#### S 1.1 Resonance stabilization in radicals from Mulliken density analysis

| Atom # | Atom | Spin Density |       | Difference      |
|--------|------|--------------|-------|-----------------|
|        |      | RC           | PC    | Abs(RC)-Abs(PC) |
| 1      | C    | -0.13        | -0.23 | -0.10           |
| 2      | C    | 0.14         | 0.24  | -0.09           |
| 3      | C    | -0.08        | -0.12 | -0.05           |
| 4      | C    | 0.15         | 0.25  | -0.10           |
| 5      | C    | -0.08        | -0.12 | -0.05           |
| 6      | C    | 0.15         | 0.23  | -0.09           |
| 7      | C    | 0.60         | 0.86  | -0.26           |
| 8      | S    | 0.36         | 0.01  | 0.35            |
| 9      | C    | -0.01        | 0.00  | 0.01            |
| 10     | Н    | 0.01         | 0.00  | 0.01            |
| 11     | Н    | 0.00         | 0.00  | 0.00            |
| 12     | Н    | 0.00         | 0.00  | 0.00            |
| 13     | Н    | -0.07        | -0.01 | 0.06            |
| 14     | Н    | -0.02        | -0.04 | -0.02           |
| 15     | Н    | -0.01        | -0.01 | -0.01           |
| 16     | Н    | 0.00         | 0.00  | 0.00            |
| 17     | Н    | -0.01        | -0.01 | -0.01           |
| 18     | Н    | 0.00         | 0.00  | 0.00            |
| 19     | Н    | -0.01        | -0.01 | 0.00            |
| 20     | Н    | -0.02        | -0.04 | -0.02           |

Table S1: Mulliken spin densities for atoms in the Initial H-abstraction step for Toluene. The radical centers are indicated in Red.

The table above lists the Mulliken spin densities for all the atoms in the reactant complex and the product complex for step 1 (Initial H-abstraction) in the case of toluene. The right most column indicated the difference in the spin densities between the product and reactant complex. A negative sign indicates a gain in spin density while a positive sign indicates a loss in spin density. It is to be noted that of the spin density that is lost by the sulfur atom only 75% is retained by the carbon center of benzyl radical, while the rest is delocalized amongst the carbons of the aromatic ring.

In the case of butane, Table S2, almost all of the spin density transferred from the sulfur centered radical in the reactant complex ends up on the carbon centered radical on the butyl radical. This the lack of spin delocalization indicates a less stabilized product complex in the case of butane.

Table S2: Mulliken spin densities for atoms in the Initial H-abstraction step for Butane. The radical centers are indicated in Red.

| Atom # | Atom | Spin Density |       | Difference      |
|--------|------|--------------|-------|-----------------|
|        |      | RC           | PC    | Abs(RC)-Abs(PC) |
| 1      | C    | -0.05        | -0.08 | -0.04           |
| 2      | C    | 0.79         | 1.05  | -0.26           |
| 3      | C    | -0.05        | -0.08 | -0.03           |
| 4      | C    | 0.01         | 0.01  | 0.00            |
| 5      | S    | 0.29         | 0.01  | 0.27            |
| 6      | C    | -0.01        | 0.00  | 0.00            |
| 7      | Н    | 0.00         | 0.00  | 0.00            |
| 8      | Н    | 0.00         | 0.00  | 0.00            |
| 9      | Н    | 0.00         | 0.00  | 0.00            |
| 10     | Н    | -0.06        | 0.00  | 0.06            |
| 11     | Н    | -0.03        | -0.06 | -0.02           |
| 12     | Н    | 0.01         | 0.01  | -0.01           |
| 13     | Н    | 0.01         | 0.01  | 0.00            |
| 14     | Н    | 0.04         | 0.05  | -0.01           |
| 15     | Н    | 0.00         | 0.00  | 0.00            |
| 16     | Н    | 0.00         | 0.00  | 0.00            |
| 17     | Н    | 0.00         | 0.00  | 0.00            |
| 18     | Н    | 0.04         | 0.05  | -0.01           |
| 19     | Н    | 0.01         | 0.01  | 0.00            |

### Section 2: Kinetic Modelling

Table S3: The A-factors and Activation energies for all the reactions of the Fumarate Addition Mechanism along with the specific reaction numbers as listed in the CHEMKIN Mechanism input file. RC denotes Reactant Complex and PC denotes Product Complex.

| Reaction | Departion                                                                                                                       | A-Factor        | Activation       |
|----------|---------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|
| #        | Reaction                                                                                                                        | (mole-cm-sec-K) | Energy (cal/mol) |
|          | Step 1 : Initial H-abstr                                                                                                        | action          |                  |
| Toluene  |                                                                                                                                 |                 |                  |
| 1        | $C_7H_8+CH_3S \Longrightarrow R1\_tol\_RC$                                                                                      | 1.36E+14        | 0                |
| 2        | $R1_{tol}RC \Rightarrow C_7H_8 + CH_3S$                                                                                         | 8.27E+16        | 6100             |
| 3        | $R1_tol_RC \Rightarrow R1_tol_PC$                                                                                               | 1.79E+12        | 14490            |
| 4        | $R1_tol_PC \Rightarrow R1_tol_RC$                                                                                               | 2.16E+13        | 8160             |
| 5        | $R1_tol_PC \Longrightarrow C_7H_7+CH_3SH$                                                                                       | 6.62E+17        | 4240             |
| 6        | $C_7H_7+CH_3SH \Longrightarrow R1\_tol\_PC$                                                                                     | 1.36E+14        | 0                |
| Butane   |                                                                                                                                 |                 |                  |
| 7        | $C_4H_{10}$ + $CH_3S => R1\_but\_RC$                                                                                            | 1.49E+14        | 0                |
| 8        | $R1\_but\_RC \Rightarrow C_4H_{10} + CH_3S$                                                                                     | 1.81E+16        | 3390             |
| 9        | $R1\_but\_RC \Rightarrow R1\_but\_PC$                                                                                           | 5.94E+11        | 15180            |
| 10       | $R1\_but\_PC \Rightarrow R1\_but\_RC$                                                                                           | 1.61E+11        | 2580             |
| 11       | $R1\_but\_PC \Longrightarrow C_4H_9+CH_3SH$                                                                                     | 9.28E+16        | 3140             |
| 12       | $C_4H_9$ + $CH_3SH => R1\_but\_PC$                                                                                              | 1.49E+14        | 0                |
|          | Step 2 : Fumarate Add                                                                                                           | dition          |                  |
| Toluene  |                                                                                                                                 |                 | -                |
| 13       | $C_7H_7+C_4H_4O_4 \Rightarrow R2_tol_RC_R$                                                                                      | 1.06E+14        | 0                |
| 14       | $C_7H_7+C_4H_4O_4 \Rightarrow R2_tol_RC_S$                                                                                      | 1.06E+14        | 0                |
| 15       | $\underline{R2\_tol\_RC\_R} \Longrightarrow C_7H_7 + C_4H_4O_4$                                                                 | 5.22E+16        | 6870             |
| 16       | $\underline{R2\_tol\_RC\_S} \Longrightarrow C_7H_7 + C_4H_4O_4$                                                                 | 3.89E+17        | 6020             |
| 17       | $\underline{\text{R2}_\text{tol}_\text{RC}_\text{R}} \Longrightarrow \underline{\text{C}_{11}\text{H}_{11}\text{O}_4_\text{R}}$ | 9.82E+10        | 7050             |
| 18       | $\underline{\text{R2\_tol\_RC\_S}} \Rightarrow \underline{\text{C}_{11}\text{H}_{11}\text{O}_{4}\text{S}}$                      | 1.63E+12        | 6790             |
| 19       | $C_{11}H_{11}O_4R \Longrightarrow R2\_tol\_RC_R$                                                                                | 9.40E+12        | 22110            |
| 20       | $C_{11}H_{11}O_4 S \Longrightarrow R2\_tol\_RC\_S$                                                                              | 1.76E+13        | 21650            |
| Butane   |                                                                                                                                 | 1               |                  |
| 21       | $C_4H_9+C_4H_4O_4 => R2\_but\_RC\_RR$                                                                                           | 1.23E+14        | 0                |
| 22       | $C_4H_9+C_4H_4O_4 => R2\_but\_RC\_RS$                                                                                           | 1.23E+14        | 0                |
| 23       | $C_4H_9+C_4H_4O_4 => R2\_but\_RC\_SR$                                                                                           | 1.23E+14        | 0                |
| 24       | $C_4H_9+C_4H_4O_4 \Rightarrow R2\_but\_RC\_SS$                                                                                  | 1.23E+14        | 0                |
| 25       | $\underline{R2\_but\_RC\_RR} \Longrightarrow C_4H_9 + C_4H_4O_4$                                                                | 2.04E+18        | 7240             |
| 26       | $R2\_but\_RC\_RS \Longrightarrow C_4H_9 + C_4H_4O_4$                                                                            | 7.33E+17        | 7340             |
| 27       | $R2\_but\_RC\_SR \Longrightarrow C_4H_9 + C_4H_4O_4$                                                                            | 1.55E+18        | 6310             |
| 28       | $\underline{R2\_but\_RC\_SS} \Longrightarrow C_4H_9 + C_4H_4O_4$                                                                | 2.12E+18        | 6180             |
| 29       | $R2\_but\_RC\_RR \Longrightarrow C_8H_{13}O_4\_RR$                                                                              | 3.71E+11        | 2120             |
| 30       | $R2\_but\_RC\_RS \Rightarrow C_8H_{13}O_4\_RS$                                                                                  | 1.40E+11        | 2410             |

| Reaction | <b>D</b>                                                                 | A-Factor        | Activation       |
|----------|--------------------------------------------------------------------------|-----------------|------------------|
| #        | Reaction                                                                 | (mole-cm-sec-K) | Energy (cal/mol) |
| 31       | $R2\_but\_RC\_SR \Rightarrow C_8H_{13}O_4\_SR$                           | 1.18E+11        | 1680             |
| 32       | $R2\_but\_RC\_SS \Rightarrow C_8H_{13}O_4\_SS$                           | 1.69E+11        | 1930             |
| 33       | $C_8H_{13}O_4_RR \Longrightarrow R2\_but_RC_RR$                          | 1.25E+14        | 25590            |
| 34       | $C_8H_{13}O_4RS = >R2\_but_RC_RS$                                        | 6.25E+13        | 26990            |
| 35       | $C_8H_{13}O_4\_SR \Rightarrow R2\_but\_RC\_SR$                           | 6.01E+13        | 25450            |
| 36       | $C_8H_{13}O_4_SS \Longrightarrow R2\_but\_RC\_SS$                        | 5.17E+13        | 25390            |
|          | Step 3 : Thiyl Radical Reg                                               | generation      |                  |
| Toluene  |                                                                          |                 | -                |
| 37       | $C_{11}H_{11}O_4$ R+CH <sub>3</sub> SH => R3_tol_RC_R                    | 1.22E+14        | 0                |
| 38       | $R3_tol_RC_R => C_{11}H_{11}O_4_R+CH_3SH$                                | 1.11E+18        | 5190             |
| 39       | $R3_tol_RC_R \Rightarrow R3_tol_PC_R$                                    | 6.89E+11        | 9040             |
| 40       | $R3_tol_PC_R \Rightarrow R3_tol_RC_R$                                    | 5.35E+11        | 17450            |
| 41       | $R3\_tol\_PC\_R \Rightarrow C_{11}H_{12}O_4\_R+CH_3S$                    | 1.23E+16        | 6460             |
| 42       | $C_{11}H_{12}O_4_R+CH_3S \Longrightarrow R3\_tol\_PC_R$                  | 1.23E+14        | 0                |
| 43       | $C_{11}H_{11}O_4$ S+ $CH_3SH => R3_tol_RC_S$                             | 1.22E+14        | 0                |
| 44       | $R3\_tol\_RC\_S \Rightarrow C_{11}H_{11}O_4\_S+CH_3SH$                   | 2.30E+18        | 5280             |
| 45       | $R3_tol_RC_S \Rightarrow R3_tol_PC_S$                                    | 1.46E+13        | 8610             |
| 46       | $R3\_tol\_PC\_S \Longrightarrow R3\_tol\_RC\_S$                          | 1.79E+12        | 17800            |
| 47       | $R3\_tol\_PC\_S \Rightarrow C_{11}H_{12}O_4\_S+CH_3S$                    | 1.66E+15        | 7550             |
| 48       | $C_{11}H_{12}O_4$ S+CH <sub>3</sub> S => R3_tol_PC_S                     | 1.23E+14        | 0                |
| Butane   |                                                                          | T               | 1                |
| 49       | $C_8H_{13}O_4$ _RR+CH <sub>3</sub> SH => R3_but_RC_RR                    | 1.24E+14        | 0                |
| 50       | $C_8H_{13}O_4$ _RS+CH <sub>3</sub> SH => R3_but_RC_RS                    | 1.24E+14        | 0                |
| 51       | $C_8H_{13}O_4$ SR+CH <sub>3</sub> SH => R3_but_RC_SR                     | 1.24E+14        | 0                |
| 52       | $C_8H_{13}O_4$ _SS+CH <sub>3</sub> SH => R3_but_RC_SS                    | 1.24E+14        | 0                |
| 53       | $R3\_but\_RC\_RR \Rightarrow C_8H_{13}O_4\_RR+CH_3SH$                    | 1.81E+16        | 4800             |
| 54       | $R3\_but\_RC\_RS \Rightarrow C_8H_{13}O_4\_RS+CH_3SH$                    | 1.48E+17        | 5870             |
| 55       | $R3\_but\_RC\_SR \Longrightarrow C_8H_{13}O_4\_SR+CH_3SH$                | 2.24E+17        | 5670             |
| 56       | $R3\_but\_RC\_SS \Rightarrow C_8H_{13}O_4\_SS + CH_3SH$                  | 3.58E+16        | 3940             |
| 57       | $R3\_but\_RC\_RR \Rightarrow R3\_but\_PC\_RR$                            | 5.91E+10        | 8570             |
| 58       | $R3\_but\_RC\_RS \Rightarrow R3\_but\_PC\_RS$                            | 3.82E+11        | 8910             |
| 59       | $R3\_but\_RC\_SR \Longrightarrow R3\_but\_PC\_SR$                        | 8.47E+12        | 9280             |
| 60       | $R3\_but\_RC\_SS \Longrightarrow R3\_but\_PC\_SS$                        | 1.42E+11        | 7370             |
| 61       | $R3\_but\_PC\_RR \Rightarrow R3\_but\_RC\_RR$                            | 1.98E+12        | 16990            |
| 62       | $R3\_but\_PC\_RS \Rightarrow R3\_but\_RC\_RS$                            | 2.28E+11        | 14680            |
| 63       | $R3\_but\_PC\_SR \Rightarrow R3\_but\_RC\_SR$                            | 4.62E+13        | 15750            |
| 64       | $R3\_but\_PC\_SS \Rightarrow R3\_but\_RC\_SS$                            | 1.93E+12        | 14610            |
| 65       | $R3\_but\_PC\_RR \Rightarrow C_8H_{14}O_4\_RR+CH_3S$                     | 2.45E+17        | 5860             |
| 66       | $R3\_but\_PC\_RS \Longrightarrow C_8H_{14}O_4\_RS+CH_3S$                 | 2.87E+16        | 5030             |
| 67       | $R3\_but\_PC\_SR \Longrightarrow C_8H_{14}O_4\_SR+CH_3S$                 | 3.04E+17        | 5100             |
| 68       | $R3\_but\_PC\_SS \Longrightarrow C_8H_{14}O_4\_SS \Longrightarrow CH_3S$ | 1.71E+16        | 3790             |

| Reaction | Pagation                                             | A-Factor        | Activation       |
|----------|------------------------------------------------------|-----------------|------------------|
| #        | Reaction                                             | (mole-cm-sec-K) | Energy (cal/mol) |
| 69       | $C_8H_{14}O_4$ _RR+CH <sub>3</sub> S => R3_but_PC_RR | 1.25E+14        | 0                |
| 70       | $C_8H_{14}O_4$ _RS+CH <sub>3</sub> S => R3_but_PC_RS | 1.25E+14        | 0                |
| 71       | $C_8H_{14}O_4$ _SR+CH <sub>3</sub> S => R3_but_PC_SR | 1.25E+14        | 0                |
| 72       | $C_8H_{14}O_4\_SS+CH_3S => R3\_but\_PC\_SS$          | 1.25E+14        | 0                |

Table S4: The matrix of equilibrium constants that constitute the reaction mechanism for toluene and butane.

|           | $K_{eq}^{ m RC}$ (mol/cm <sup>3</sup> ) | $K_{eq}^{\mathrm{TST}}$ | $K_{eq}^{ m PC}$ (cm <sup>3</sup> /mol) |
|-----------|-----------------------------------------|-------------------------|-----------------------------------------|
| Step 1    | Initial H-abstraction                   |                         |                                         |
| Toluene   | 4.86E+01                                | 1.89E-06                | 3.81E+00                                |
| Butane    | 2.54E+00                                | 2.15E-09                | 3.11E+00                                |
| Step 2    | Fumarate Addition                       |                         |                                         |
| Toluene R | 2.22E+02                                | 1.15E+09                |                                         |
| Toluene S | 7.13E+00                                | 7.29E+09                |                                         |
|           |                                         |                         |                                         |
| Butane RR | 1.23E+01                                | 4.81E+14                |                                         |
| Butane RS | 4.04E+01                                | 2.31E+15                |                                         |
| Butane SR | 3.33E+00                                | 5.23E+14                |                                         |
| Butane SS | 1.96E+00                                | 5.13E+14                |                                         |
| Step 3    | Thiyl Radical Regeneration              |                         |                                         |
| Toluene R | 7.04E-01                                | 1.88E+06                | 9.30E-02                                |
| Toluene S | 3.94E-01                                | 4.43E+07                | 4.23E-03                                |
|           |                                         |                         |                                         |
| Butane RR | 2.28E+01                                | 4.44E+04                | 9.96E-02                                |
| Butane RS | 1.69E+01                                | 2.84E+04                | 4.70E-02                                |
| Butane SR | 7.90E+00                                | 1.02E+04                | 4.46E-01                                |
| Butane SS | 2.68E+00                                | 1.49E+04                | 1.84E+00                                |