Theoretical Study on Photophysical Properties of Triphenylamine-Cored Molecules with Naphthalimide Arms and Different π -Conjugated Bridges as Organic Solar Cells Materials

Ruifa Jin^{a*} and Yingfei Chang

^a College of Chemistry and Chemical Engineering, Chifeng University, Chifeng 024000, China ^b Faculty of Chemistry, Northeast Normal University, Changchun 130024, China

Index

- **Table S1** Calculated the longest wavelength of absorption λ_{max} and corresponding oscillator strength f of TPA-DHT-DCN by various methods with 6-31G(d,p) basis set, along with available experimental data
- Table S2 The HOMOs and LUMOs contributions of individual fragments (in %) to the FMOs of the investigated molecules
- **Table S3** The natural population analysis (NPA) for **1a–1d** in the S₀ and S₁ at the B3LYP/6-31G(d,p) and TD-B3LYP/6-31G(d,p) levels, respectively
- Table S4 Calculated E_{HOMO} , E_{LUMO} , and E_g (all in eV) of NI and TPA at the TD-B3LYP/6-31G(d,p) level
- **Table S5** The absorption wavelengths λ_{abs} and corresponding *f* (in parenthesis) of the first fifteen excited states for **1a–1d** and **2a–2d** obtained by the TD-B3LYP/6-31G(d,p) level
- **Table S6** The absorption wavelengths λ_{abs} and corresponding *f* (in parenthesis) of the first fifteen excited states for **3a–3d** and **4a–4d** obtained by the TD-B3LYP/6-31G(d,p) level

 Table S7 Calculated lattice constants of 1a in different space groups

Fig. S1 The sketch map of the structure of TPA-DHT-DCN

Fig. S2 Electronic density contours of the frontier molecular orbitals for 3a-3d and 4a-4d

Methods	$\lambda_{ m max}$	f
TD-B3LYP/6-31G(d,p)	588	1.11
TD-PBE0/6-31G(d,p)	548	1.36
TD-CAM-B3LYP/6-31G(d,p)	434	2.69
TD-BLYP/6-31G(d,p)	838	0.56
TD-OLYP/6-31G(d,p)	825	0.57
TD-BHandH/6-31G(d,p)	439	2.64
TD-BHandHLYP/6-31G(d,p)	439	2.66
TD-MPWB95/6-31G(d,p)	848	0.56
TD-SVWN/6-31G(d,p)	842	0.58
Exp ^a	580	

Table S4: Calculated the longest wavelength of absorption λ_{max} and corresponding oscillator strength *f* of TPA–DHT–DCN by various methods with 6-31G(d,p) basis set, along with available experimental data.

^a Experimental data for TPA-DHT-DCN in film state were taken from ref. [22]

		HOMO			LUMO	
Species	NIa	CB ^b	TPAc	NIa	CB ^b	TPA ^c
1 a	19.9	15.9	64.2	77.9	9.3	12.8
1b	23.1	15.6	61.2	76.6	9.6	13.7
1c	20.8	16.0	63.2	77.0	9.6	13.5
1d	19.8	15.8	64.4	78.4	9.2	12.3
2a	11.9	24.8	63.3	84.2	11.1	4.6
2b	6.6	25.0	68.5	85.9	10.2	3.9
2c	19.6	23.8	56.6	83.4	11.6	5.0
2d	6.3	24.8	68.9	87.0	9.6	3.4
3 a	3.8	18.1	78.1	17.9	75.8	6.3
3b	4.3	18.3	77.4	13.7	79.8	6.5
3c	4.1	18.2	77.7	14.8	78.8	6.4
3d	3.7	18.0	78.3	20.6	73.2	6.3
4 a	7.2	28.8	63.9	86.0	10.4	3.6
4b	7.4	29.2	63.4	85.0	10.8	4.2
4c	7.3	29.1	63.5	85.3	10.7	4.0
4d	7.3	28.7	64.0	86.2	10.2	3.6

Table S2: The HOMOs and LUMOs contributions of individual fragments (in %) to the FMOs of the investigated molecules.

^a NI: 1,8-naphthalimide moieties; ^b CB: conjugate bridge moieties; ^c TPA: triphenylamino moieties.

Table S3: The natural population analysis (NPA) for **1a–1d** in the S_0 and S_1 at the B3LYP/6-31G(d,p) and TD-B3LYP/6-31G(d,p) levels, respectively.

q (S ₀)					q (S ₁)			Δq^d		
Species	NIc	CB ^b	TPA ^a	NI	CB	TPA	NI	CB	TPA	
1a	-0.130	0.063	0.067	-0.140	0.065	0.075	-0.010	0.002	0.008	
1b	-0.113	0.057	0.056	-0.125	0.063	0.062	-0.012	0.006	0.006	
1c	-0.118	0.059	0.059	-0.129	0.062	0.067	-0.011	0.003	0.008	
1d	-0.137	0.065	0.072	-0.148	0.068	0.080	-0.011	0.003	0.008	

^aNI: 1,8-naphthalimide moieties; ^bCB: conjugate bridge moieties; ^cTPA: triphenylamino moieties; ^d $\Delta q = q(S_1) - q(S_0)$.

 species
 $E_{\rm HOMO}$ $E_{\rm LUMO}$ $E_{\rm g}$

 TPA
 -4.96
 -0.32
 4.64

 NI
 -6.57
 -2.49
 4.08

Table S4: Calculated E_{HOMO} , E_{LUMO} , and E_{g} (all in eV) of **NI** and **TPA** at the TD-B3LYP/6-31G(d,p) level.

species	1a	1b	1c	1d	2a	2b	2c	2d
S ₁	521(0.96)	519(0.25)	517(1.04)	527(0.98)	546(0.55)	516(0.58)	538(0.62)	542(0.54)
S_2	520(0.90)	519(0.26)	515(1.14)	526(1.07)	532(0.29)	515(0.45)	524(0.39)	540(0.41)
S_3	477(0.00)	517(0.06)	471(0.00)	481(0.00)	459(0.75)	498(0.02)	461(0.77)	522(0.02)
S_4	396(0.69)	513(0.79)	452(0.00)	398(0.75)	438(0.22)	490(0.00)	461(0.40)	412(1.17)
S_5	395(0.57)	512(0.81)	448(0.00)	398(0.70)	431(0.00)	488(0.00)	454(0.01)	411(0.82)
S_6	390(0.01)	469(0.00)	448(0.00)	392(0.00)	405(0.73)	486(0.00)	430(0.00)	406(0.07)
S_7	387(0.00)	464(0.00)	407(0.01)	390(0.00)	404(0.27)	432(0.00)	428(0.00)	397(0.15)
S_8	376(0.13)	462(0.00)	406(0.01)	378(0.15)	399(0.06)	431(0.00)	419(0.06)	395(0.19)
S_9	375(0.14)	462(0.00)	403(0.02)	378(0.14)	393(0.12)	429(0.00)	406(1.00)	390(0.00)
\mathbf{S}_{10}	358(0.22)	447(0.00)	396(0.72)	361(0.25)	375(0.27)	427(0.00)	401(0.18)	388(0.02)
S_{11}	358(0.24)	445(0.00)	395(0.69)	361(0.25)	374(0.04)	427(0.00)	392(0.09)	386(0.00)
S_{12}	354(0.00)	445(0.00)	394(0.01)	355(0.00)	370(0.02)	423(0.00)	387(0.01)	351(0.13)
S ₁₃	354(0.00)	395(0.79)	393(0.00)	355(0.00)	346(0.00)	402(1.34)	385(0.00)	351(0.02)
S_{14}	354(0.00)	394(0.67)	390(0.00)	355(0.00)	346(0.00)	401(0.96)	380(0.00)	350(0.05)
S_{15}	345(0.00)	388(0.00)	388(0.02)	350(0.00)	345(0.08)	394(0.04)	379(0.00)	347(0.02)

Table S5: The absorption wavelengths λ_{abs} and corresponding *f* (in parenthesis) of the first fifteen excited states for **1a–1d** and **2a–2d** obtained by the TD-B3LYP/6-31G(d,p) level.

species	3a	3h	30	3d	4a	4b	4c	4d
S.	592(0.46)	588(0.50)	589(0.50)	594(0.51)	578(0.53)	564(0.67)	569(0.66)	589(0.61)
S S	592(0.40)	584(0.54)	585(0.50)	501(0.51)	576(0.55)	561(0.07)	566(0.41)	585(0.01)
\mathbf{S}_2	387(0.31)	384(0.34)	383(0.34)	391(0.34)	374(0.38)	301(0.42)	300(0.41)	383(0.39)
S_3	552(0.00)	549(0.00)	550(0.00)	554(0.00)	553(0.04)	539(0.04)	544(0.03)	562(0.04)
S_4	473(0.01)	524(0.00)	463(0.02)	479(0.01)	437(0.70)	477(0.00)	434(0.87)	443(0.81)
S_5	471(0.01)	524(0.00)	461(0.02)	477(0.01)	436(0.32)	476(0.00)	432(0.40)	441(0.34)
S_6	469(0.01)	524(0.00)	459(0.01)	475(0.01)	433(0.12)	474(0.00)	430(0.13)	439(0.14)
S_7	423(0.33)	495(0.00)	450(0.00)	422(0.45)	418(0.02)	431(0.89)	419(0.02)	422(0.03)
S_8	422(0.23)	492(0.00)	450(0.00)	422(0.29)	415(0.02)	429(0.39)	418(0.02)	420(0.01)
S_9	421(0.19)	488(0.00)	499(0.00)	420(0.17)	412(0.29)	427(0.15)	416(0.01)	416(0.24)
S_{10}	401(0.00)	482(0.00)	427(0.33)	400(0.00)	409(0.39)	426(0.03)	413(0.12)	413(0.30)
S_{11}	395(0.00)	480(0.00)	427(0.28)	394(0.00)	408(0.24)	422(0.00)	412(0.22)	412(0.42)
S ₁₂	392(0.00)	477(0.00)	426(0.05)	393(0.00)	376(0.02)	419(0.00)	411(0.17)	380(0.02)
S ₁₃	384(0.02)	460(0.01)	425(0.11)	383(0.03)	375(0.02)	418(0.00)	408(0.33)	379(0.02)
S_{14}	382(0.03)	458(0.01)	424(0.00)	382(0.04)	374(0.02)	415(0.00)	405(0.02)	378(0.02)
S_{15}	375(0.00)	458(0.00)	421(0.00)	376(0.00)	360(0.06)	414(0.00)	377(0.00)	367(0.01)

Table S6: The absorption wavelengths λ_{abs} and corresponding *f* (in parenthesis) of the first fifteen excited states for **3a–3d** and **4a–4d** obtained by the TD-B3LYP/6-31G(d,p) level.

Space groups	total energy	a (Å)	<i>b</i> (Å)	c (Å)	α (°)	β (°)	γ (°)
<i>C2</i>	175.7068	36.02	34.87	10.97	90.0	78.1	90.0
C2/c	185.0624	42.38	30.44	29.34	90.0	93.2	90.0
Сс	182.9068	31.60	31.32	24.89	90.0	145.8	90.0
$P2_{I}$	164.9213	31.26	33.41	5.58	90.0	89.7	90.0
$P2_{I}/c$	164.3638	9.46	36.42	35.19	90.0	118.6	90.0
$P2_{1}2_{1}2_{1}$	172.3915	15.68	27.95	24.05	90.0	90.0	90.0
$P\overline{1}$	173.1959	9.29	21.15	33.13	78.6	73.3	75.4
Pbca	182.5234	41.48	40.03	17.09	90.0	90.0	90.0
Pbcn	181.2880	19.33	27.30	66.35	90.0	90.0	90.0
$Pna2_{I}$	166.8797	23.93	35.92	10.76	90.0	90.0	90.0

 Table S7: Calculated lattice constants of 1a in different space groups.

Fig. S2 The sketch map of the structure of TPA–DHT–DCN.

Fig. S1 Electronic density contours of the frontier molecular orbitals for 3a–3d and 4a–4d.