Supporting Information

Reaction Mechanisms of Aqueous Monoethanolamine with Carbon Dioxide: A Combined Quantum Chemical and Molecular Dynamics Study

Gyeong S. Hwang^{1,2,*}, Haley M. Stowe², Eunsu Paek¹, and Dhivya Manogaran³

¹Department of Chemical Engineering, ²Materials Science and Engineering Program, and ³Departments of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States

*Author to whom correspondence should be addressed: email: <u>gshwang@che.utexas.edu</u>

Figure S1. Total energy variations from AIMD simulations for the unreacted (E_U) and reacted (E_R) systems consisting of (2 MEA, 1 CO₂, 16 H₂O) and (1 MEACOO⁻, 1 MEAH⁺, 16 H₂O), respectively, as discussed in Sec. III.A. For each case, the solid line represents the average of five simulations with different initial configurations.

Figure S2. Various configurations employed for the calculation of $E_b(H^+)$ at different abstraction sites in Fig. 4.

Figure S3. Predicted deprotonation process from a zwitterion (MEA⁺COO⁻) via a wellconnected water network, giving a low barrier of 0.08 eV. The red, blue, and white indicate O, N, and H atoms, respectively.

Figure S4. Predicted pathway and energetics (in eV) for proton transfer from a zwitterion (MEA⁺COO⁻) to a nearby MEA molecule. The white, grey, blue, and red balls represent H, C, N, and O atoms, respectively.

Force fields employed in this work

The total energy (E_{total}) is the sum of the bond (E_{bond}) , angle (E_{angle}) , torsion $(E_{torsion})$ and nonbonding energies $(E_{nonbond})$. The nonbonding energy for each pair includes Colulomb interaction and van der Waals interaction in the 12-6 Lennard-Jones form. Bond and angle energies were expressed in the harmonic form. Two different forms were used to express the torsion energies, depending on the dihedral type.

Г

$$E_{total} = E_{bond} + E_{angle} + E_{torsion} + E_{nonbond}$$

$$E_{bond} = \sum_{i} k_{b,i} (r_i - r_{0,i})^2$$

$$E_{angle} = \sum_{i} k_{\theta,i} (\theta_i - \theta_{0,i})^2$$

$$E_{torsion} = \sum_{i} K[1 + \cos(n\emptyset - d)]$$
or
$$E_{torsion} = \sum_{i} [C_1 + C_2 \cos(\emptyset) + C_3 (\cos(\emptyset))^2 + C_4 (\cos(\emptyset))^3]$$

$$E_{nonbond} = \sum_{i} \sum_{j>i} \left\{ \frac{q_i q_j e^2}{r_{ij}} + 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] \right\}$$

Here, $k_{b,i}$, $k_{\theta,i}$, represent the bond and angle force constants, respectively. *K*, C_1 , C_2 , C_3 , and C_4 are torsion energy coefficients, *n* is the periodicity of the torsion, *d* is the phase offset, and \emptyset is the dihedral angle. $r_{0,i}$ and $\theta_{0,i}$ are the bond distance and bond angle at equilibrium, respectively. For E_{bond} , q_i is the partial atomic charge, r_{ij} is the distance between atoms *i* and *j*, ε_{ij} and σ_{ij} are the Lennard-Jones parameters which refers to the depth of the potential well and the distance where the potential is zero, respectively. The Coulomb and L-J energies were calculated between atoms separated by three or more bonds. Although most force fields scale the 1-4 L-J and Coulomb energies, in this simulation, they were unscaled as recommended by a previous study to prevent overestimation of intramolecular hydrogen bonding in the amine species.¹ The Lorentz-Berthelot combination rule was applied for unlike atom pairs where $\varepsilon_{ij} = \sqrt{\varepsilon_i \varepsilon_i}$ and $\sigma_{ij} = (\sigma_i + \sigma_j)/2$.

Species	Atom	qi	σ _i (Å)	ε_i (kcal/mol)	Reference $(\sigma_i, \varepsilon_i)$
· ·	H _N	0.297	1.069	0.0157	
	N	-0.739	3.25	0.170	
MEA	C _N	-0.113	3.3996	0.1094	
	Co	-0.007	3.3996	0.1094	
	O _H	-0.662	3.0664	0.2104	
	Ho	0.383	0.0	0.0	
	H _C	0.136	2.4714	0.0157	1
	H _N	0.294	1.069	0.0157	1
	N	-0.676	3.250	0.1700	
	C _N	-0.069	3.3996	0.1094	
	Co	0.019	3.3996	0.1094	
MEACOO	O _H	-0.663	3.0664	0.2104	
	Ho	0.379	0.0	0.0	
	H _C	0.131	2.4714	0.0157	
	C _{COO}	0.534	3.3996	0.0860	2
	O _{COO}	-0.671	2.9599	0.2100	2
	H _N	0.438	1.069	0.0157	1
	N	-0.719	3.340	0.1700	2
	C _N	-0.141	3.3996	0.1094	
MEAH^+	Co	-0.020	3.3996	0.1094	
	O _H	-0.641	3.0664	0.2104	1
	Ho	0.395	0.0	0.0	
	H _C	0.203	2.4714	0.0157	
MEA ⁺ COO ⁻	H _N	0.390	1.069	0.0157	1
	N _H	-0.706	3.34	0.1700	2
	C _N	-0.098	3.3996	0.1094	
	Co	-0.027	3.3996	0.1094	
	O _H	-0.649	3.0664	0.2104	1
	Ho	0.393	0.0	0.0	
	H _C	0.177	2.4714	0.0157	
	C _{COO}	0.587	3.3996	0.0860	2
	O _{COO}	-0.494	2.9599	0.2100	Ĺ

 Table S1.
 Nonbonded Force Field Parameters

Species	Bond Type	k_b (kcal/mol/ Å ²)	r ₀ (Å)	Reference
	N - C _N	320.6	1.470	
MEA	$C_N - C_O$	303.1	1.535	
MEACOO ⁻	N - H _N	394.1	1.018	1
MEAH^{+}	$C_{O} - O_{H}$	314.1	1.426	1
MEA ⁺ COO ⁻	O_H - H_O	369.6	0.974	
	С _{N/О} - Н _С	335.9	1.093	
MEACOO	N - C _{COO}	490.0	1.335	2
MEA ⁺ COO ⁻	C_{COO} - O_{COO}	570.0	1.229	

 Table S2.
 Bond Parameters

Table S3. Angle Parameters

Species	Angle Type	$k_{\theta} (\text{kcal/mol/rad}^2)$	θ_0 (°)	Reference
MEA	C_N - N - H_N	46.0	116.78	
MEA MEAH ⁺	H _N - N - H _N	35.0	109.5	
MEA MEAH ⁺ MEACOO ⁻	N - C _N - C _O	66.2	110.38	1
	H_C - $C_{N/O}$ - $C_{N/O}$	46.4	110.07	
$\mathbf{MEA}\mathbf{H}^+$	$C_N - C_O - O_H$	67.7	109.43	
MEACOO ⁻	$C_O - O_H - H_O$	47.1	108.16	
MEACOO MEA ⁺ COO ⁻	H_{C} - C_{N} - N	50.0	109.5	
	H_C - $C_{N/O}$ - H_C	35.0	109.5	
	H_{C} - C_{O} - O_{H}	50.0	109.5	
MEACOO	C_N - N - H_N	30.0	118.04	
	C_N - N - C_{COO}	50.0	121.9	
MEACOO ⁻	C_{COO} - N - H_N	30.0	120.0	2
MEA ⁺ COO ⁻	N - C_{COO} - O_{COO}	80.0	122.90	
	O_{COO} - C_{COO} - O_{COO}	80.0	126.0	
MEAH ⁺ MEA ⁺ COO ⁻	C _N - N - H _N	50.0	109.5	
MEA ⁺ COO ⁻	$\overline{N - C_N - C_O}$	66.2	111.2	
	H_N - N - H_N	35.0	109.5	

			í.		
Species	Dihedral Type	C ₁ (kcal/mol)	C ₂ (kcal/mol)	C ₃ (kcal/mol)	C ₄ (kcal/mol)
MEA	H_N - N - C_N - C_O	0.59	-3.75	-1.18	3.28
MEAH^{+}	$O_H - C_O - C_N - N$	0.08	-4.487	-0.16	4.6224
MEACOO ⁻ MEA ⁺ COO ⁻	C_N - C_O - O_H - H_O	0.0	-0.22	0.0	-0.28

Table S4. Dihedral Parameters (Multi-Harmonic Form)¹

Table S5. Dihedral Parameters (Amber Form)²

Species	Dihedral Type	K (kcal/mol)	n	d (°)
MEACOO	H_{C} - C_{N} - N - H_{N}/C_{COO}	0.0	2	0
	H _N - N - C _{COO} - O _{COO}	2.0	1	0
MEACOO ⁻	O _{COO} - C _{COO} - N - C _N	2.5	2	180
MEA ⁺ COO ⁻	H _C - C _O - O _H - H _O	0.167	3	0
	C_{O} - C_{N} - N - C_{COO}	0.530	1	0
	$H_C/O_H/N$ - $C_{O/N}$ - $C_{N/O}$ - H_C	0.156	3	0
MEA ⁺ COO ⁻	H_{C} - C_{N} - N - H_{N}/C_{COO}	0.156	3	0

REFERENCES

[1] E. F. da Silva, T. Kuznetsova, B. Kvamme, and K. M. Merz, *J. Phys. Chem. B*, 2007, **111**, 3695–3703.

[2] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. W. Kolmman, *J. Am. Chem. Soc.*, 1995, **117**, 5179-5197.