Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Supporting Information

Fig. S1 Splitting of the PhOH–Ar mass peak in the time-of-flight mass spectrometer under application of the negative pulse for the high resolution MATI spectroscopy, setting the total energy ($v_{exc} + v_{ion}$) to IE₀(π) (68447 cm⁻¹). Each peak provides direct ionization, high resolution (HR)-MATI, and normal resolution (NR)-MATI signal, respectively.

Fig. S2 Time-of-flight mass spectrum of PhOH– Ar_n recorded under the same condition as the MATI-IR spectra described in the text for resonant soft ionization of PhOH–Ar via its S₁ origin.

Fig. S3 Comparison between MATI spectra of PhOH–Ar recorded via the (a) 0^0 and (b) σ_z^{-1} levels in the S₁ state.

Fig. S4 Comparison between high-resolution MATI monitored IR (HR-MATI-IR) (I) and II)), normalresolution MATI monitored IR (NR-MATI-IR) (III) and IV)), and REMPI-IR (V) and VI)) spectra of PhOH–Ar monitored in the PhOH⁺–Ar and PhOH⁺ mass channels at the (a) $IE_0(\pi)$, (b) β_x^{1} , (c) β_y^{1} , (d) β_x^{2} , and (e) σ_z^{1} levels, respectively.