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Supplementary Information

Electronic Transport Calculations

The transport calculations were performed on TRANSAMPA
code which employs non-equilibrium Green’s function com-
bined with density functional theory (NEGF-DFT). To per-
form these calculations the system is divided in three parts:
left lead(L), scattering region(CC) and right lead(R) (see Fig.
1). We also assume that the leads only couple with the scatter-
ing region, but do not with each other.

Fig. 1 Ball-and-stick representation of the set up used in the
transport calculations.

The Hamiltonian matrix H for the system is an infinite Her-
mitian matrix. Firstly, we have to define principal layer(PL).
A principal layer is the smallest cell that repeats periodically
in the direction of the transport. For example, in this paper, it
is composed by the atoms in the three outermost Au layers on
each side of the system, as can be seen in Fig. 1.
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The Hamiltonian matrix for the system is

H =

 HLL HLC 0
HCL HCC HCR

0 HRC HRR

 (1)

where, HLL(HRR) are infinite block-diagonal matrices with the
following form:

HLL =


. . . . . . . . . . . .

...
0 H−1 H0 H1 0
... 0 H−1 H0 H1
... ... 0 H−1 H0

 (2)

where H0 is a matrix describing all interactions within a PL,
and H1(−1) is a N ×N matrix that describes the interaction
between two PLs. N is the total number of basis function in
the PL. It is assumed that there is no coupling between the
left and the right leads (HLR = HRL = 0). The atoms in these
regions were held fixed at their ideal bulk positions. HLL(HRR)
are obtained in a bulk electronic structure calculation. HCC
stands for a M×M matrix that describes the interaction in the
scattering region and, HRC eHLC stand for the matrices

HLC =

 ...
0

H1

 (3)

which contains the interaction between the PL and the scat-
tering region. For a system with time-reversal symmetry
HRC = H†

CR and HLC = H†
CL.

In the Landauer-Büttiker formalism, the current is given by

I =
2e
h

∫
T (E) [ fL(E)− fR(E)]dE, (4)

where T (E) stands for the transmission coefficient, f (E) is
the Fermi-Dirac distribuction function. The conductance of
the system, G, can be written as

G =
2e2

h

∫
T (E)

(
− ∂ f

∂E

)
dE. (5)

(6)
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The transmission coefficient[T (E)], which plays a central
role in this formalism, can be obtained by using the standard
Green’s functions formalism.

The Schrödinger equation for the whole system (eq. 1) is HLL HLC 0
HCL HCC HMR

0 HRC HRR

 ψLL
ψCC
ψRR

= E

 ψLL
ψCC
ψRR

 . (7)

However, as we see above, the Hamiltonian matrices which
describe the leads, HLL(RR), and their coupling with the scat-
tering region are semi-infinite, which makes the problem hard
to solve.

Thus, we will turn our attention to the Green’s functions.
Within the single particle picture, the Green’s function can be
calculated from its definition

(H−E)Gr = 1. (8)

where Gr stands for the the retarded Green’s function for the
whole system.

In a matrix form, we can write HLL−E HLC 0
HCL HCC−E HCR

0 HRC HRR−E

 Gr
LL Gr

LC Gr
LR

Gr
CL Gr

CC Gr
CR

Gr
RL Gr

RC Gr
RR


=

 1 0 0
0 1 0
0 0 1

 . (9)

After some algebra, we get

(HLL−E)Gr
LC +HLCGr

CC = 0 (10)
HCLGr

LC +(HCC−E)Gr
CC +HCRGr

RC = 1 (11)
HRCGr

CC +(HR−E)Gr
RC = 0, (12)

where we can write,

(10) ⇒ Gr
LC =−gr

LLHLCGr
CC (13)

(12) ⇒ Gr
RC =−gr

RRHRCGr
CC, (14)

where gr
LL(RR) is the Green’s function of the left(right) lead,

defined as (HL(R)−E)gr
LL(RR) = 1. Putting Gr

LC (eq. 13) and
Gr

RC (eq. 14) on equation 11, we get

HCL(−gr
LLHLCGr

CC)+(HCC−E)Gr
CC+HCR(−gr

RRHRCGr
CC)= 1.

(15)
Rearranging the terms, we obtain

[HCC−E− (HCLgr
LLHLC)− (HCRgr

RRHRC)]Gr
CC = 1 (16)

Thus, as final result, we get

Gr
CC(E) = [(HCC +Σ

r
LL(E)+Σ

r
RR(E))−E]−1 , (17)

where we define the self-energies

Σ
r
LL(E) = −HCLgr

LL(E)HLC (18)
Σ

r
RR(E) = −HCRgr

RR(E)HRC. (19)

Therefore, the effect of the leads over the scattering region is
to add the self-energies Σr

LL e Σr
RR to the Hamiltonian HCC. It

is interesting to note that inspite the matrices HCL(R), gr
LL(RR)

and HL(R)C be semi-infinite, the product between them results
in a finite matrix.

As we have the Green’s function of the scattering region,
we can calculate the transmission coefficient. Within the non-
equilibrium Green’s function formalism, T (E) can be written
as,

T (E) = Tr{ΓLLGr
CCΓRRGa

CC} , (20)

where Gr(a)
CC is the retarded(advanced) Green’s function, and

the matrices ΓLL(RR) which describe the coupling of the scat-
tering region with the leads, are given by

ΓLL(RR)(E) = i
{

Σ
r
LL(RR)(E)− [Σr

LL(RR)(E)]
†
}

(21)

= −2Im
{

ΣLL(RR)(E)
}
. (22)

Thus, we complete the presentation of the formalism used
for the calculations of the electronic transport properties.

Thermal Transport Calculations

Seebeck effect

The Seebeck effect, deals with the conversion of thermal en-
ergy into electrical energy, or more specifically, the appear-
ance of an electric field due to a temperature difference be-
tween the ends of a material.

The physical mechanism behind this effect is conceptually
simple: the electronic distribution function (the Fermi-Dirac
distribution function) has a higher electron population in the
levels with energy above Fermi energy at the hotter end than
in the colder end. Thus, there will be more electrons flowing
from the hot side to the cold side than vice-versa, which gen-
erates a potential difference across the ends, as shown in Fig.
2. If the circuit is open, the system reaches equilibrium due to
accumulation of charge in the ends. However, if it is closed,
electrons can keep flowing in a denominated thermocurrent.
This is the principle behind the thermoelectric generators.

The Seebeck coefficient (S) is a measure of the magnitude
of the induced thermoelectric voltage (∆V ), when the mate-
rial is under an applied temperature difference (∆T ). If ∆T
between the two ends of a material is small, we can write:

∆V = S∆T. (23)

2 | 1–5



Fig. 2 Schematic illustration of the Seebeck effect. The electrons
from the hot side(THot ), which are more energetics, move to the cold
side (TCold) with a tax greater then the electrons from the cold side,
generating an electrical potential difference.

Experimentally, the Seebeck coefficient can be defined as
the external electrical potential difference needed to make the
thermo-voltage null. Thus, for a null electric current:

S =
Vext

∆T

∣∣∣∣
I=0

= −∆V
∆T

∣∣∣∣
I=0

. (24)

In the Landauer formalism, the current of a two terminal
device coupled to a reservoir with left and right chemical po-
tentials (µL and µR) and left and right temperatures (TL and
TR) is given by:

I(µL,TL; µR,TR) =
e

π h̄

∫
T (E)) [ f (E,µL,TL)− f (E,µR,TR]dE

(25)

Applying the Sommerfeld expansion to both the electrochem-
ical potential and the temperature, we get the current for small
electrical potential difference, ∆µ = e∆V , and temperature,
∆T ,

I =
e

π h̄
T (EF)∆V − e

π h̄
π2k2

B
3

T
∂T
∂E

∣∣∣∣
EF

∆T (26)

where T stands for the average temperature between the leads.
For I = 0, in Eq. 26, we obtain an expression to the thermo-

voltage:

∆V =
π2k2

B
3e T 1

T
∂T
∂E

∣∣∣
EF

∆T (27)

=
π2k2

B
3e T ∂ ln(T )

∂E

∣∣∣
EF

∆T. (28)

Then, the resultant Seebeck coefficient is:

S =−∆V
∆T

=− π2k2
B

3e
T

∂ ln(T )
∂E

∣∣∣∣
EF

. (29)

The derivative, in Eq. 29, can be computed by two distinct
forms. The first form is to calculate the ln(T (E)) and to take
the derivative

∂

∂E
[ln(T (E))] . (30)

The second possible way is by using the chain rule, which
results in

1
T (E)

∂T (E)
∂E

. (31)

We choose the second form, since the logarithmic function
varies very fast if T (E)< 1. More than that, using Eq. 31 we
add one more point in the numerical derivative calculation.

Considering, now, a variation in the current produced by
small variation in both electrochemical potential and temper-
ature, ∆µ = e∆V/2 and ∆T ′ = ∆T/2, that is

∆I = I(µL +∆µ,TL +∆T ′; µR−∆µ,TR−∆T ′)− I(µL,TL; µR,TR).
(32)

Instead of performing the Sommerfeld expansion in Eq. 32,
it is possible to perform the expansion in a Taylor series, on
the Fermi-Dirac distribution. Thus, considering only the first-
order terms, we get

f (E,µi +∆µ,Ti +∆T ′) = f (E,µi,T )+
∂ f
∂ µ

∆µ +
∂ f
∂T

∆T ′ (33)

= f (E,µi,T )−
∂ f
∂E

∆µ− ∂ f
∂E

(E−µ)
∆T ′

Ti +∆T ′

where i = L,R. In this way, the expression to the current vari-
ation under an applied ∆V and ∆T is

∆I =
e2∆V
2π h̄

∫
T (E)

(
−∂ fL

∂E
− ∂ fR

∂E

)
dE (34)

+
e∆T

2π h̄T

∫
T (E)

[
−∂ fL

∂E
(E−µR)−

∂ fL
∂E

(E−µR)

]
dE

where fL/R≡ f
(
E,µL(R),TL(R)

)
and (TL+TR)/2 is the average

temperature of the electrodes.
Defining the terms,

Kn =
∫

T (E)(− ∂ f
∂E

)(E−µ)ndE (35)

and substituting it in the Eq.35 we get

∆I =
e2∆V
2π h̄

(KL
0 +KR

0 )+
e∆T

2π h̄T
(KL

1 +KR
1 ) (36)
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where the superscript L(R) in KL(R)
n indicates that we are con-

sidering µ = µL(R). If we consider ∆I = 0, we obtain a new
equation to the thermopower or Seebeck coefficient (S)

S =− 1
eT

(KL
1 +KR

1 )

(KL
0 +KR

0 )
. (37)

In the linear regime, low temperatures and low voltages, µL ≈
µR ≈ µ and TL ≈ TR ≈ T , we can write:

S =− 1
eT

K1

K0
. (38)

Figure of Merit (ZT)

The thermoelectric devices are, in their inwardness, thermal
machines and they must obey the thermodynamics laws.
Then, we can calculate the theoretical maximum efficiency
from these devices. For electrical generators, the maximum
efficiency is provided by the expression:

ηmax =
TH −TC

TH

(
1− 1+TC/TH√

1+ZT +TC/TH

)
, (39)

where TH(C) is the temperature of the hot(cold) source and ZT
is the named figure of merit, with Z defined as:

Z =
GS2

κ
=

GS2

κph +κel
, (40)

being G the electronic conductance, S the Seebeck coefficient
and κ the thermal conductance. From the equation to ηmax,
eq. 39, it is possible to see that greater is ZT (unlimited, in
principle) closer to the Carnot efficient limit, ( TH−TC

TH
), ηmax is

(if ZT =∞, ηmax=ηCarnot ).
Based on this analysis, it is possible to see that the figure

of merit ZT is a simple parameter that determines the thermo-
electric efficacy of a material or device. To optimize Z, i.e.
to reach the highest value possible, we have to simultaneously
optimize G and S, which must be as greater as possible, and
κel and κph must be as lower as possible. This is not a easy
task, since these quantities are not completely independent.

Now, we are going to discuss an approximation that makes
the calculation of the figure of merit easier. In the case of ma-
terials with high electronic mobility, and therefore, high elec-
tronic conductance G, the thermal electronic conductivity κel
is also high. Whether κel is greater than κph, in a first approxi-
mation, it is quite reasonable to neglect the κph in eq.40. Then,
we have to keep in mind that we are calculating the upper limit
of Z.

Considering the above approximation, we obtain

Z =
GS2

κel
. (41)

By using the Kn terms presented in eq. 35, we can write G, S
and κel like:

G =
e2

h
K0 (42)

S = − 1
eT

K1

K0
(43)

κel =
1
h

(
K1eS+

K2

T

)
(44)

and, consequently, we obtain

ZT =

(
K2K0

K2
1
−1
)−1

. (45)

Additional Figures
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Fig. 3 Upper panels: Self-Interaction corrected transmission
coefficient plots for the representative geometries of a BDT
molecule attached to Au electrodes. Lower panel: Self-Interaction
corrected transmission coefficient, at the Femi level, as a function of
the electrodes separation.
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Fig. 4 Upper panels: Seebeck coefficient plots for the representative
geometries of a BDT molecule attached to Au electrodes. Lower
panel: Seebeck coefficients calculated at the Fermi level as a
function of the electrodes separation for all the geometries
investigated

Fig. 5 Upper panels: Figure of merit (ZT) plots for the
representative geometries of the structural evolution of the
Au/BDT/Au junction. Lower panel: Figure of merit calculated at the
Fermi level as a function of the electrodes separation for all the
geometries investigated
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