Supporting information

Nanoscale spinel LiFeTiO₄ for intercalation

pseudocapacitive Li⁺ storage

Ruiyong Chen,^{abc} Michael Knapp,^{bc} Murat Yavuz,^{bc} Shuhua Ren,^a Ralf Witte,^{ad} Ralf Heinzmann,^a Horst Hahn,^{acd} Helmut Ehrenberg^{bc} and Sylvio Indris^{abc}

 ^a Institute of Nanotechnology, ^b Institute of Applied Materials, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
 ^c Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), 89081 Ulm, Germany
 ^d Joint Research Laboratory Nanomaterials, Institute of Materials Science, TU Darmstadt, 64287 Darmstadt, Germany

	Fd-3m	Fd-3m	Fm-3m
	spinel LiFeTiO ₄	spinel Fe ₂ TiO ₄	rock-salt FeO
<i>a</i> / Å	8.354(3)	8.463(3)	4.243(6)
$V/ \text{\AA}^3$	583.1	606.2	76.4
wt%	75.0	23.2	1.8
<i>D</i> / nm	3.3	7.2	30.5
(x,y,z)/occ.			
01	0.2599/1.000	0.2577/1.000	0.5/1.000
Fe1	0.125/0.300(5)	0.125/0.828(7)	0/1.000
Li1	0.125/0.699(9)		
Fe2	0.5/0.036(2)	0.5/0.276(0)	
Li2	0.5/0.463(8)		
Ti1	0.5/0.500(1)	0.5/0.724(8)	
Fe3	0/0.121(7)		

Table S1. XRD Rietveld refinement parameters of the as-prepared LiFeTiO₄

Samples	Fe ⁿ⁺	IS	QS	Γ	%
as-prep	3+	0.32	0.64	0.50	47.8
	3+	0.35	1.10	0.47	15.8
	2+	1.11	1.41	0.59	16.7
	2+	0.74	1.09	0.66	19.6
1 st -4.8V (R.T.)	$3+\delta$	0.19	0.66	0.41	26.5
	3+	0.40	0.72	0.43	38.1
	2+	0.81	0.89	0.69	23.7
	2+	0.95	1.85	0.57	11.7
160 th -4.8V (40°C)	$3+\delta$	0.16	0.72	0.34	21.0
	4+	0.04	0.16	0.19	4.3
	3+	0.36	0.74	0.41	36.7
	2+	1.10	1.55	0.70	17.8
	2+	0.61	0.80	0.67	20.2
100 th -1.5V (R.T.)	2+	0.99	1.38	0.75	49.9
	2+	0.99	2.14	0.45	42.5
	3+	0.30	0.29	0.32	7.6

Table S2. Mössbauer parameters of as-prepared and cycled LiFeTiO₄: iron oxidation state (n^+) , isomer shift (IS/mm s⁻¹), quadrupole splitting (QS/mm s⁻¹), linewidth (Γ /mm s⁻¹), relative intensity

Table S3. Refined lattice parameters of the major phase (cubic spinel Fd-3m) for the as-prepared and cycled LiFeTiO₄

	a / Å	$V/ m \AA^3$	Δ V % α
as-prep	8.354(3)	583.2	0.0
100 th -1.5V (R.T.)	8.392(5)	591.1	+1.35
50 th -4.8V (40°C)	8.349(9)	582.2	-0.17
160 th -4.8V (40°C)	8.342(9)	580.7	-0.43
	$8.044(8)^{b}$	520.6	-10.7%

^{*a*} The lattice volume change (ΔV %) is given relative to the one of the asprepared material.

^b Lattice parameter corresponds to a newly formed cubic spinel phase.

Fig. S1 Charge/discharge capacities of LiFeTiO₄ measured at a 0.05C rate at room temperature and at a 4C rate at 40 °C in the voltage range of 1.5-4.8 V vs. Li⁺/Li.

Fig. S2 *d*-spacing of as-prepared $LiFeTiO_4$ and samples collected from the first charge-discharge cycle at room temperature.

Fig. S3 *Ex situ* synchrotron XRD patterns of (311) and (440) Bragg peaks of asprepared and cycled LiFeTiO₄.

Fig. S4 Rietveld refinement of 100th discharged LiFeTiO₄. Space group: *Fd-3m*, *R*-factors: $R_p = 8.51$, $R_{wp} = 8.44$, $R_e = 6.30$. Fe³⁺ cations were distributed as: (Fe_{0.11})_{8a}[Fe_{0.17}]_{16c}[Fe_{0.08}]_{16d} derived from the Rietveld refinement. Note that the Fe and Ti have very close X-ray scattering factors. The 2θ region at about 10° was excluded for refinement.

Fig. S5 Complex impedance plots of LiFeTiO₄ at fully discharged states (1.5 V) from the first and extended cycles tested at 40°C. Inset shows the enlarged plots at high frequent regions.