SUPPLEMENTARY MATERIALS

to

"Electronic properties of PbX₃CH₃NH₃ (X=Cl, Br, I) compounds for photovoltaic and photocatalytic applications"

Sigismund Teunis Alexander George Melissen¹, Frédéric Labat², Philippe Sautet¹, Tangui Le Bahers^{*1}

 ¹ Université de Lyon, Université Claude Bernard Lyon1, ENS Lyon, Centre Nationale de Recherche Scientifique, 46 allée d'Italie, 69007 Lyon Cedex 07, France
 ²LECIME, Laboratoire d'Electrochimie, Chimie des Interfaces et Modélisation pour l'Energie, UMR 7575 CNRS, Ecole Nationale Supérieure de Chimie de Paris – Chimie ParisTech, 11 rue P. et M. Curie, 75231 Paris Cedex 05, France.

*tangui.le_bahers@ens-lyon.fr

Table of Contents

1.	Computed cell parameters.	.2
2.	Data Bandgaps.	.3
3.	Data infinit dielectric constant.	.3
4.	Data dielectric constant.	.3
5.	Data exciton binding energies.	.3
6.	Data effective masses	.4
8.	Infra-red Spectroscopy.	.5
9.	Summary of values of the band gaps, exciton binding energies and dielectric constants	.6
10.	Summary of effective masses	.7
а	. With Spin-Orbit-coupling:	.7
b	. Without Spin-Orbit-coupling:	.7
11.	Geometry Optimizations	.8
12.	References1	2

1. Computed cell parameters.

	PbCl ₃		PbBr ₃			PbI ₃	
	Cub.	Cub.	L I	et.	Cub.	T	et.
	a	а	<i>a</i> '	с'	а	a'	с'
PBE	5.722	6.024	8.402	12.097	6.441	8.983	12.845
PBE-D	5.652	5.931	8.265	11.844	6.308	8.721	12.555
PBEsol	5.624	5.903	8.222	11.830	6.294	8.767	12.562
PBEsol-D	5.551	5.808	8.057	11.689	6.164	8.523	12.276
B3PW91	5.736	6.034	8.423	12.116	6.441	8.987	12.853
B3PW91-D	5.736	5.896	8.188	11.860	6.260	8.722	12.557
PBE0	5.632	5.996	8.372	12.041	6.441	8.931	12.787
PBE0-D	5.640	5.914	8.232	11.795	6.289	8.673	12.499
HSE	5.702	5.994	8.393	11.988	6.408	8.898	12.923
HSED	5.607	5.860	8.174	11.738	6.235	8.807	12.769
Exp	5.675	5.901	8.322	11.833	6.328	8.856	12.660

 Table S1. Computed cell parameters (using CRYSTAL14 code) using several functionals. Results highlighted in grey are obtained by including the D2 dispersion correction in the calculations. The chosen method is highlighted in dark grey.

2. Data Bandgaps.

Method	Ref	PbCl	PbI	Br ₃	Pb	I ₃
		Cub.	Cub.	Tet.	Cub.	Tet.
Exp	Ishiharabat <i>et al.</i> ¹ Papavissilion <i>et al.</i> ^{2,3}	2.98	2.33	2.3	1.63	1.7
LDA	Even <i>et al.</i> ⁴			0.54		0.98
LDA	Brivio et al.5				1.46	
LDA-SO	Brivio et al.5				0.53	
PBE	Mosconi et al.6	2.34	1.80	1.83	1.57	1.66
PBE	Giorgi et al.7				1.64	
PBE-SO	Brivio et al.5				0.52	
PBEsol	Brivio et al.5				1.2	
HSE	This work	2.81	2.31	2.56	1.89	2.10
HSE-SO	This work	1.64	1.15	1.54	0.68	1.04
GW	Umari et al. ⁸					2.68
GW	Brivio et al.5				2.73	
GW-SO	Umari et al. ⁸					1.67
GW-SO	Brivio et al.5				1.67	

Table S2. Data used to draw the Figure 3.

3. Data infinit dielectric constant.

Method	Ref	PbCl	PbI	Br ₃	Pb	I ₃
		Cub.	Cub.	Tet.	Cub.	Tet.
Exp	Hirasawa <i>et</i> <i>al</i> .9		4.8		6.5	
PBE-SO	Umari et al.8					5.6
PBEsol	Brivio et al.10				6.2	
PBEsol	Brivio et al.5				6.1	
HSE	This work	3.52	4.05	4.07	5.13	5.00
HSE-SO	This work	3.78	4.37	4.36	5.82	5.62
GW-SO	Umari et al.8					7.1
GW-SO	Brivio et al.5				4.5	

Table S3. Data used to draw the Figure 4.

4. Data dielectric constant.

Method	Ref	PbCl	PbI	Br ₃	Pb	I ₃
		Cub.	Cub.	Tet.	Cub.	Tet.
Exp	Poglitsch <i>et</i> <i>al</i> . ¹¹	23.9	25.5		28.8	
PBEsol	Brivio et al.10				24.9	
PBEsol	Brivio et al.5				25.7	
HSE-PBE0 _{D2}	This work	12.1	13.9	15.4	17.1	17.1
HSE-SO- PBE0 _{D2}	This work	12.4	14.2	15.7	17.8	17.7

Table S4. Data used to draw the Figure 5.

5. Data exciton binding energies.

Method	Ref	PbCl 3	Pb	Br ₃	Pb	I ₃
		Cub.	Cub.	Tet.	Cub.	Tet.
Exp	Tanaka <i>et al</i> .			76		50
Exp	Hirasawa <i>et</i> al. ⁹					37
Hückel						29

HSE- ε_r	This work	9.6	6.2	8.9	3.4	6.8
$HSE-\varepsilon_{\infty}$	This work	114.8	72.3	127.9	37.2	79.3
HSE-SO- ε_r	This work	15.5	10.1	7.7	5.5	3.9
HSE-SO- ε_{∞}	This work	166.2	107.5	100.8	50.9	39.1

Table S5. Data used to draw the Figure 7.

6. Data effective masses.

Method	Ref	Pb	Cl ₃		Pb	Br3			Pł	oI ₃	
		Cu	ıb.	Cu	ıb.	T	et.	Cu	ıb.	T	et.
		m_e^*	m_h^*	m_e^*	m_h^*	m_e^*	m_h^*	m_e^*	m_h^*	m_e^*	m_h^*
PBE	Umari et al.8									0.35	0.45
PBE-SO	Umari et al.8									0.26	0.16
HSE	This work	0.19	0.25	0.16	0.19	0.39	0.26	0.13	0.17	0.31	0.27
HSE-SO	This work	0.36	0.34	0.29	0.31	0.28	0.28	0.22	0.29	0.17	0.19
GW-SO	Umari et al.8									0.18	0.24
GW-SO	Brivio <i>et al.</i> ⁵							0.15	0.12		

Table S6. Data used to draw the Figure 8.

8. Infra-red Spectroscopy.

Р	bCl₃			Pt	oBr ₃					Р	bl3		
c	Cub.	c	ub.		Т	et.		c	ub.		Т	et.	
$\bar{\nu}$ / cm ⁻¹	Int / a.u.	$\bar{\nu}$ / cm-1	Int / a.u.	$\bar{\nu}$ / cm ⁻¹	Int / a.u.	_ν / cm ⁻¹	Int / a.u.	$\bar{\nu}$ / cm ⁻¹	Int / a.u.	$\bar{\nu}$ / cm ⁻¹	Int / a.u.	_ [¯] / cm ⁻¹	Int / a.u.
55.5	8.47	29.6	7.79	6.6	0.07	303.4	19.92	20.0	3.83	14.1	0.00	301.9	0.15
61.7	23.86	36.2	2.95	12.1	0.01	307.5	0.97	29.3	5.40	16.9	0.00	308.3	6.34
64.2	3.73	41.2	12.80	27.2	0.03	912.5	459.20	32.4	3.79	22.1	0.06	912.1	345.62
64.2	20.95	41.9	3.60	28.6	0.79	913.7	0.14	34.4	10.50	24.1	0.02	915.9	10.89
78.4	38.97	47.9	5.00	31.7	0.50	920.5	13.25	38.8	19.25	27.0	0.02	916.2	2.35
95.0	14.33	53.7	18.61	35.3	0.02	922.1	0.51	40.4	34.52	27.9	0.17	917.2	3.64
97.0	11.65	84.8	52.38	39.1	28.15	933.5	97.15	54.8	13.75	28.6	6.11	928.6	52.79
109.7	18.48	87.2	207.00	39.3	32.14	935.0	224.41	65.4	38.70	28.8	108.11	929.6	34.05
112.3	201.14	90.2	25.50	40.2	0.03	935.5	86.32	73.3	110.77	29.8	160.93	930.4	59.31
120.7	250.00	100.5	201.77	44.4	28.14	936.5	18.71	75.4	164.47	33.2	77.01	931.9	5.54
145.1	244.14	106.1	195.46	44.8	13.70	1024.1	5.79	83.7	191.04	36.7	40.96	1017.8	0.02
164.1	385.92	114.8	40.03	45.5	42.96	1024.4	26.50	95.9	138.23	37.1	0.79	1017.9	34.83
173.6	60.54	124.6	49.25	48.5	45.32	1025.2	30.27	100.0	3.82	38.3	1.16	1018.5 	0.00
185.4	105.73	138.4	77.64	49.3	0.20	1025.6	4.20	113.4	49.25	39.5	19.06	1018.7	25.00
187.4	84.72	143.5	91.23	52.4	6.85	1281.6	150.24	118.4	92.12	40.1	8.52	1275.1	0.06
341.4	0.65	330.3	1.24	52.9	1.87	1282.7	0.55	303.2	9.65	41.8	0.08	1276.8	0.10
934.0	39.85	922.9	49.98	53.6	4.05	1283.8	0.45	920.1	112.21	43.1	0.24	1277.6	0.04
962.1	35.33	947.9	36.73	57.6	18.30	1284.2	0.05	930.8	31.26	44.3	0.38	1279.1	34.91
1043.6	15.31	1026.9	14.39	57.8	54.30	1289.4	0.30	1013.0	11.43	45.2	4.39	1288.4	9.19
1290.5	15.45	1283.9	14.87	58.2	11.57	1290.0	0.61	1282.8	22.19	46.3	0.16	1289.1	20.95
1300.0	7.72	1293.5	7.57	58.5	3.53	1290.7	22.10	1286.9	10.45	48.0	0.01	1289.9 	29.16
1449.1	29.75	1450.6	23.14	60.9	1.55	1291.1	20.75	1453.0	18.97	49.0	1.05	1291.0	8.79
1499.2	35.70	1495.9	32.71	63.3	7.15	I 1447.4	0.07	1493.5	40.52	49.8	266.10	1448.2	0.71
1511.2	8.99	1503.7	14.46	65.0	0.12	1448.1	40.68	1496.5	35.49	50.1	1.47	1448.3	94.29
1569.5	182.89	1552.1	173.50	65.3	451.14	1448.3	48.50	1540.2	211.28	50.3	3.36	1448.6	18.18
1646.2	117.89	1637.3	141.15	68.1	34.54	1448.8	0.10	1634.2	148.08	51.8	10.02	1449.0	95.04
1647.1	213.22	1652.8	191.86	69.6	0.23	1485.1	1.33	1645.2	200.54	53.3	0.48	1494.2	9.72
3098.7	4.49	3093.9	2.46	72.0	2.39	1486.1	0.13	3083.5	1.50	57.0	1.44	1495.1 	19.86
3214.4	4.49	3207.8	3.66	74.1	6.09	1487.9 	162.68	3199.0	2.87	58.7	32.95	1495.6	14.58
3222.1	2.12	3217.8	1.94	76.1	2.17	1488.8 	0.05	3208.2	0.60	61.3	640.84	1495.9	31.30
3297.6	562.35	3293.6	545.62	79.1	121.69	I 1494.4	112.36	3319.3	506.53	63.7	14.61	1498.5	101.65
3332.3	1210.39	3340.4	1113.54	84.1	189.68	1494.5	27.89	3388.7	808.83	65.3	319.18	1498.7	13.46
3448.7	385.35	3464.7	301.75	87.5	4.80	1499.0	0.50	3438.8	504.26	65.5	61.30	1499.6	1.81
				88.4	731.38	1499.7	137.47			67.4	519.05	1500.6	5.20
				90.0	157.25	1526.6	0.91			68.5	49.52	1525.6	11.47
				92.8	4.88	1529.8 	146.50			69.0	57.09	1527.3	314.83
				93.2	1.63	1533.3 	312.43			74.2	4.19	1533.7 	229.16
				95.0	31.77	1535.5	3.15			76.3	2.43	1534.6	127.16
				95.5	496.61	1621.0	106.84			78.6	52.05	1623.3	52.67
				98.1	26.28	1623.0	1.08			79.1	53.54	1625.9	566.05
				98.8	48.66	1628.7	0.62			80.1	2.13	1627.5	432.63

99.8	36.19	1630.7	80.86	81.1	0.01	1630.1	468.63
102.2	31.64	1637.4	503.21	81.6	15.99	1635.4	324.11
102.4	52.11	1641.6	1.90	88.2	16.16	1638.4	12.61
103.6	69.91	1648.6	0.04	88.8	5.31	1641.4	9.10
108.3	55.93	1653.2	10.53	91.5	4.13	1644.9	96.40
110.1	3.87	3100.1	2.53	91.8	7.29	3086.9	0.94
118.7	44.93	3100.9	3.51	102.0	0.59	3087.1	1.24
119.4	25.16	 3101.3	1.16	102.3	0.08	1 3090.6	1.42
120.8	1.04	 3101.5	4.11	102.6	1.49	3091.7	1.27
121.3	0.58	3214.8	0.00	110.8	0.02	3203.0	2.08
134.0	40.29	3215.0	3.71	116.6	0.03	3203.4	1.79
134.8	0.05	3215.2	12.60	118.8	23.91	3203.5	1.55
138.8	1.17	3216.2	7.21	120.5	1.17	3203.9	1.62
145.7	1.00	3221.1	2.86	121.3	5.66	3208.6	2.68
146.3	0.08	3221.6	4.90	121.6	87.94	3209.0	2.37
149.0	0.54	3224.3	1.80	121.8	67.77	3218.1	1.61
151.0	131.31	3224.6	5.18	131.8	5.26	3220.2	1.79
155.9	0.65	3275.2	2158.08	133.3	2.45	3304.5	437.09
157.5	68.43	3276.5	1249.05	134.1	112.95	3305.5	279.86
158.2	4.98	3278.4	184.70	139.0	0.25	3310.4	517.51
159.7	115.29	3283.6	28.94	159.1	29.25	3311.1	1231.46
161.1	0.19	3391.9 	646.10	160.1	52.06	3365.5	1012.61
165.6	0.04	i 3394.0	416.77	161.6	53.66	, 3371.0	792.44
167.3	5.45	3398.6	1325.41	164.8	2.34	3383.6	1660.40
186.2	575.40	3401.1	844.43	173.2	209.63	3385.7	319.53
188.6	36.21	3430.4	974.53	175.2	53.47	3428.8	166.29
190.7	1.07	3433.4	335.26	177.7	69.66	3430.1	180.67
203.6	0.01	3438.8 	292.31	178.2	10.56	3433.8 	1595.65
296.8	10.25	3441.3	389.62	299.6	19.78	3437.6	16.97
300.7	3.63	1		301.2	6.30	1	

 Table S7. Computed IR frequencies and intensities (on the PBE0-D geometries). Values with $l^2/\tilde{v}^2 > 1$ are highlighted and correspond to the transitions strongly contributing to the vibrational term in the dielectric constant.

9. Summary of values of the band gaps, exciton binding energies and dielectric constants

	E _g (no SO)	E _g (SO)	$E_b(\infty)$	E _b (r)	€∞	٤ _{vib}	٤ _r
$PbCl_3$ -c (R)	2.81	1.64	99.3	9.2	3.79	8.6	12.1
$PbBr_3-c(R)$	2.31	1.15	62.5	5.9	4.37	9.9	13.9
PbI_3 -c (R)	1.88	0.68	28.6	3.1	5.85	12.0	17.1
PbBr ₃ -t (G)	2.56	1.54	111.6	8.6	4.36	11.4	15.8
PbI_3 -t (G)	2.10	1.04	62.6	6.3	5.62	12.1	17.7

10. Summary of effective masses

a. With Spin-Orbit-coupling:

Direction		Ι	E	Br
	h+	e-	h+	e-
100	0.20	0.18	0.28	0.27
001	0.18	0.13	0.35	0.37
110	0.20	0.18	0.27	0.27
011	0.20	0.24	0.25	0.24
111	0.19	0.16	0.29	0.29
$\bar{m^*}$	0.19	0.17	0.28	0.28

Tetragonal phases

Cubic phases

Direction	Ι		Br		Cl	
	\mathbf{h}^+	e-	\mathbf{h}^+	e-	\mathbf{h}^+	e-
100	0.29	0.23	0.34	0.29	0.37	0.36
110	0.30	0.22	0.31	0.28	0.34	0.35
111	0.29	0.24	0.30	0.30	0.33	0.37
$\bar{m^*}$	0.29	0.23	0.31	0.29	0.35	0.36

b. Without Spin-Orbit-coupling:

Direction		I	Br		
	\mathbf{h}^+	e-	\mathbf{h}^+	e-	
100	0.24	1.12	0.28	0.90	
001	0.42	0.16	0.37	0.28	
110	0.29	1.15	0.34	1.16	
011	0.22	0.21	0.24	0.25	
111	0.26	0.32	0.18	0.29	
$\bar{m^*}$	0.27	0.31	0.26	0.39	

Cubic phases

Direction	Ι		Br		Cl	
	\mathbf{h}^+	e⁻	\mathbf{h}^+	e-	\mathbf{h}^+	e-
100	0.18	0.09	0.20	0.12	0.24	0.14
110	0.17	0.14	0.19	0.18	0.23	0.24
111	0.16	0.20	0.18	0.22	0.21	0.27
$\bar{m^*}$	0.17	0.13	0.19	0.16	0.23	0.20

11. Geometry Optimizations

The geometries of all structures ((c)ubic and (t)etragonal) are provided in this section. Lattice parameters are in Å, atomic positions are expressed relative to the lattice dimensions.

```
PbI3-c, constrained optimization
a=b=c 6.2887177267999999
Pb 0.0 0.0 0.0
I 0.5 0.0 0.0
т 0.0 0.5 0.0
I 0.0 0.0 0.5
N 0.4874524620054004 0.4940061548475967 0.6764940157680002
C 0.5314187159587007 0.5014580668713009 0.4442999829246972
H 0.3279499668270986 0.5116171663013986 0.7094820121784977
H 0.5667520886567985 0.6122178141067991 0.7570639838185969
H 0.5354349635685978 0.3515216315240011 0.7417592796736017
H 0.4659672075208974 0.6487549367892029 0.3800563606133025
н 0.4558479018761972 0.3637103772651002 0.3706797956764021
н 0.7031241123592977 0.4954237172940026 0.4205809092176978
PbI3-t, constrained optimization
a 8.7594521844 (a=b=8.759452)
b 8,7594524422
c 12.5965028
Pb 0.0 0.0 0.0
Pb 0.5 0.5 0.0
Pb 0.0 0.0 0.5
Pb 0.5 0.5 0.5 I 0.0 0.0 0.25
I 0.0 0.0 -0.25 I 0.5 0.5 0.25
I 0.5 0.5 -0.25
I 0.2106317239 -0.2893682761 1.74277805722871E-019
I -0.1806523254 0.3193476746 3.42728007729733E-020
I 0.3007524708 0.2007524708 1.41763902841986E-019
I -0.2989083449 -0.1989083449 2.27344383197057E-019
I -0.2860490432 0.2139509568 0.50000003
I 0.3209227279 -0.1790772721 0.50000003
I -0.1981316415 -0.2981316415 0.500000003
I 0.2022018077 0.3022018077 0.50000003
N 0.0838675659 0.4392904691 0.2161279149
N 0.4214542346 -0.0574143145 0.2125618639
N -0.0799582269 0.4418273764 -0.287463372
N -0.4147599262 -0.0544454598 -0.2863950697
 -0.0351525679 -0.4600814489 0.2623852347
C 0.4909029123 0.0639862746 0.2791115531
C -0.0099200926 -0.4375587423 -0.220568704
C 0.4889266377 0.0449431133 -0.2183032539
Н 0.137152561 0.4924470706 0.153349416
н 0.1648467338 0.4122628717 0.272108407
н 0.0366037176 0.3400572362 0.1875755833
H -0.0890530338 0.4800302166 0.3282692687
Н 0.0189852492 -0.3560284993 0.2914322034
н -0.1188345442 -0.4330304723 0.201074166
н 0.3786533726 -0.0108643044 0.1433880131
н 0.5000694733 -0.1393679529 0.1925474421
н 0.3322376138 -0.1086786043 0.2515516677
н -0.4635597968 0.0121069544 0.3509499342
н -0.4187670037 0.1199414424 0.2340068713
H 0.4024363748 0.146494248 0.2997406108
н -0.1221674008 0.4887615664 -0.3566683687
н -0.0017635369 0.3594371119 -0.3073757435
н -0.1697677456 0.3911410223 -0.2487182353
H 0.0349693249 -0.4901175095 -0.1487844566
H 0.0810615478 -0.3820704393 -0.2653100335
н -0.0978589398 -0.3545449563 -0.1998376659
н -0.3462044867 0.0109990764 -0.3348311938
н -0.3464835004 -0.1224877781 -0.2399774863
н -0.4817542556 -0.1220508566 -0.334573183
н 0.417518879 -0.0274873888 -0.1685592371
н -0.4364610871 0.1145108471 -0.1686377704
н 0.4187055714 0.1176164551 -0.2689083776
```

PbBr3-c, constrained optimization a=b=c 0.591418218236E+01

Pb Br Br C - H (H - H (H (H (H ($\begin{array}{c} 0.0 & 0.0 & 0.0 \\ -0.5 & 0.0 & 0.0 \\ 0.0 & -0.5 & 0.0 \\ 0.0 & 0.0 & -0.5 \\ 0.4763233 & 0.493 \\ 0.4642825 & 0.493 \\ 0.3055355 & -0.443 \\ 0.4429436 & -0.33 \\ 0.4718387 & -0.33 \\ 0.4718387 & -0.344 \\ 0.2809593 & 0.443 \\ \end{array}$	14506 -0.31394(961150 0.44218 366294 -0.28839 3827910 -0.2256 385629 -0.2415 469639 0.369284 99914 0.3617244 363351 0.425876	09 72 953 5062 799 12 1 56
PbE a=k	8r3-t, constra: =8.2320778	ined optimizati	lon
c=1	1.79492047		
Pb	0.0 0.0	0.0	
Pb	0.0 0.0	-0.5	
Pb	-0.5 -0.5	-0.5	
Br	0.0 0.0	0.25	
Br	0.0 0.0	-0.25	
Br	-0.5 -0.5	-0.25	
Br	0.22301217	-0.27698783	0.0000000
Br	-0.18263739	0.31736261	0.00000000
Br	0.29599031	0.19599031	0.0000000
Br	-0.30396357	-0.20396357	0.0000000
Br Br	-0.27489204	0.22510796	-0.50000000
Br	-0.20228227	-0.30228227	-0.50000000
Br	0.19815152	0.29815152	-0.50000000
Ν	0.07886333	0.44980884	0.20121931
Ν	0.41095633	-0.05879313	0.21922723
Ν	-0.08612997	0.44370013	-0.28821583
N	-0.42625293	-0.07257512	-0.27060394
C	-0.48522838	0.05571415	0.28385675
С	0.01024893	-0.44693549	-0.21445950
С	0.46510431	0.07000121	-0.25676016
Η	0.14177102	-0.47126020	0.14957322
H H	0.16128913	0.37801719	0.24264084
Н	-0.09042993	0.45260141	0.33479058
Η	0.05470582	-0.38664816	0.33682073
Η	-0.10813533	-0.38243586	0.23644737
H H	0.34150122	0.00243723	0.16058250
Н	0.33460043	-0.11952833	0.27341765
Н	-0.40882136	-0.01423625	0.34121167
Η	-0.41167924	0.12614202	0.22478542
H	0.43590610	0.13567679	0.33297684
н ц	-0.01335703	-0.49031873	-0.33200734
н	-0.16817242	0.37846860	-0.24136435
Н	0.08111099	0.47912028	-0.15606226
Н	0.08942085	-0.37250606	-0.26728982
Η	-0.07343486	-0.37020180	-0.16668945
Η	-0.31059036	-0.03782955	-0.29284096
Н Н	-0.41596313	-0.13706931	-0.19612296
н	0.34607572	0.02782086	-0.22908267
Н	-0.48268988	0.15050968	-0.19327045
Н	0.45497267	0.13194159	-0.33810367

PbCl3-c, constrained optimization a=b=c 0.563979292000E+01

```
Pb 0.0 0.0 0.0
Cl -0.5 0.0 0.0
Cl 0.0 -0.5 0.0
Cl 0.0 0.0 -0.5
N 0.468761 0.498906 -0.305443
C -0.463504 0.498743 0.440873
н 0.287677 -0.497966 -0.279820
н -0.465780 -0.354885 -0.218087
Н -0.471200 0.349548 -0.219232
H 0.467508 -0.340124 0.359373
н 0.459870 0.341971 0.357852
H -0.270838 0.494052 0.428463
PbI3-c, unconstrained optimization
a 6.32217490 alpha 88.584465
b 6.19709604 beta 92.815823
c 6.37790877 gamma 88.217428
Pb 1.271555482731E-02 -3.535442795481E-03 3.965632303378E-02
I -4.845153412397E-01 6.095592821410E-03 -2.719740685473E-03
  -2.424422510490E-02 4.963281563581E-01 -3.535859574524E-02
 7.082661554633E-02 -7.722102381113E-03 -4.877475900023E-01
Т
N 4.509582620841E-01 -4.882202011204E-01 -3.387598401004E-01
C -4.500040587209E-01 4.847057183614E-01 4.566452867998E-01
H 2.972149422163E-01 -4.293695887284E-01 -3.577226541282E-01
  -4.681687915615E-01 -3.814714749393E-01 -2.461309543111E-01
Η
H 4.497196213025E-01 3.673388168442E-01 -2.550075486376E-01
H -4.548618200951E-01 -3.590899062387E-01 3.734051755640E-01
H 4.608011791770E-01 3.671671931732E-01 3.668949251949E-01
H -2.864945252739E-01 4.264830980288E-01 4.872615472722E-01
PbI3-t, unconstrained optimization
```

```
a 8.43865375 alpha 85.448026
b 7.79704572 beta 89.960109
c 11.90148590 gamma 90.004073
Pb -1.608681759094E-02 -3.519984351563E-03 1.315280784427E-02
Pb -4.839518620181E-01 4.965043930970E-01 1.366470818820E-02
Pb 1.542079041023E-02 -3.359438586540E-03 -4.868533136542E-01
Pb 4.833428362911E-01 4.966330122075E-01 -4.864521404358E-01
Br 1.500340335724E-02 2.228080564862E-02 2.645778116141E-01
Br -1.591836986833E-02 2.223876901193E-02 -2.353662345480E-01
Br 4.837536437023E-01 -4.774962763440E-01 2.652750363364E-01
Br -4.847327803644E-01 -4.773584314365E-01 -2.347333931246E-01
Br 2.278355714139E-01 -2.772663111436E-01 1.658175418330E-02
Br -1.564100439261E-01 3.503947363083E-01 2.895734259311E-03
Br 2.722884284974E-01 2.230295853541E-01 1.680516677283E-02
Br -3.433806661813E-01 -1.494478010295E-01 3.461656115596E-03
Br -2.730256199080E-01 2.229601699459E-01 -4.831905869961E-01
Br 3.428167217609E-01 -1.492609779606E-01 -4.965835030865E-01
Br -2.285454699040E-01 -2.770475872109E-01 -4.833630851318E-01
Br 1.560042868903E-01 3.502366147798E-01 -4.970757685152E-01
N 7.615048957181E-02 4.531140695892E-01 2.246664172511E-01
C -6.733338599407E-02 -4.624569906122E-01 2.662305430423E-01
H 1.267481382080E-01 -4.750795241978E-01 1.572259348537E-01
H 1.592371820190E-01 4.358137579202E-01 2.875384719283E-01
H 5.002142268762E-02 3.334335308829E-01 1.992792946331E-01
H -1.190511631569E-01 4.546068992791E-01 3.347435600646E-01
H -3.349198755013E-02 -3.395119742431E-01 2.967130365492E-01
H -1.509873126103E-01 -4.424963452318E-01 1.967119736514E-01
N 4.227536453832E-01 -4.644119255469E-02 2.250101787470E-01
 -4.337150617607E-01 3.811981347413E-02 2.662988766154E-01
H 3.708761019896E-01 2.637985080061E-02 1.585912389312E-01
H 4.492410692270E-01 -1.650611462456E-01 1.981285181203E-01
H 3.407507352325E-01 -6.587853410380E-02 2.885310190261E-01
H -3.805801792330E-01 -4.587610146654E-02 3.336128242256E-01
H -3.511209348410E-01 6.041979151559E-02 1.962396631603E-01
H -4.679205744626E-01 1.598326312310E-01 2.983755149825E-01
N -7.700694086996E-02 4.536271723451E-01 -2.753337131640E-01
C 6.669727762172E-02 -4.620459118487E-01 -2.341085794572E-01
H -1.287300644105E-01 -4.735678590354E-01 -3.418510943458E-01
H -5.071546059178E-02 3.348511805307E-01 -3.020995216470E-01
H -1.591259369720E-01 4.345277255189E-01 -2.118399533502E-01
H 1.197639951155E-01 4.539097282733E-01 -1.667705217502E-01
H 1.492749844964E-01 -4.399637821871E-01 -3.041966689449E-01
H 3.272574354024E-02 -3.401855763664E-01 -2.021175112454E-01
```

```
N -4.237900326404E-01 -4.681418235906E-02 -2.749725607435E-01
C 4.329724041640E-01 3.800205041394E-02 -2.333232759102E-01
H -3.737296749428E-01 2.428198091427E-02 -3.429442780106E-01
H -3.401734672637E-01 -6.322774247858E-02 -2.123872082209E-01
H -4.500455110699E-01 -1.669969060082E-01 -2.995195629410E-01
H 3.819316703952E-01 -4.414290171247E-02 -1.641420693686E-01
H 4.669839008508E-01 1.614857246573E-01 -2.037353930122E-01
H 3.486857014766E-01 5.685150024198E-02 -3.025325006047E-01
PbBr3-c, unconstrained optimization
a 5.96447237 alpha 90.349905
b 5.77117435 beta 91.294961
c 5.88224848 gamma 90.685044
Pb 1.355417081773E-02 -4.861815629931E-04 3.381241657654E-02
Br -4.838365698323E-01 -5.760749740540E-03 -3.556776655431E-03
Br -4.701234851793E-02 4.987491380980E-01 -3.220025212523E-02
Br 8.521296561525E-02 1.070253791327E-03 -4.734326234436E-01
N 4.399465065975E-01 4.932336118343E-01 -3.285187077022E-01
C -4.450199164325E-01 4.981373208612E-01 4.508223284133E-01
H 2.690449497423E-01 4.780796803237E-01 -3.488321496160E-01
H 4.724818746012E-01 -3.574182884087E-01 -2.356586558306E-01
H 4.908781695535E-01 3.545077526199E-01 -2.315319588759E-01
H 4.965835657923E-01 -3.521095922517E-01 3.550990447737E-01
H -4.846664704826E-01 3.376392440809E-01 3.588130337172E-01
H -2.649216520890E-01 -4.872127939405E-01 4.847727396032E-01
PbBr3-t, unconstrained optimization
a 8.43865375 alpha 85.448026
b 7.79704572 beta 89.960109
c 11.90148590 gamma 90.004073
Pb -1.608681759094E-02 -3.519984351563E-03 1.315280784427E-02
Pb -4.839518620181E-01 4.965043930970E-01 1.366470818820E-02
Pb 1.542079041023E-02 -3.359438586540E-03 -4.868533136542E-01
Pb 4.833428362911E-01 4.966330122075E-01 -4.864521404358E-01
Br 1.500340335724E-02 2.228080564862E-02 2.645778116141E-01
Br -1.591836986833E-02 2.223876901193E-02 -2.353662345480E-01
Br 4.837536437023E-01 -4.774962763440E-01 2.652750363364E-01
Br -4.847327803644E-01 -4.773584314365E-01 -2.347333931246E-01
Br 2.278355714139E-01 -2.772663111436E-01 1.658175418330E-02
Br -1.564100439261E-01 3.503947363083E-01 2.895734259311E-03
Br 2.722884284974E-01 2.230295853541E-01 1.680516677283E-02
Br -3.433806661813E-01 -1.494478010295E-01 3.461656115596E-03
Br -2.730256199080E-01 2.229601699459E-01 -4.831905869961E-01
Br 3.428167217609E-01 -1.492609779606E-01 -4.965835030865E-01
Br -2.285454699040E-01 -2.770475872109E-01 -4.833630851318E-01
Br 1.560042868903E-01 3.502366147798E-01 -4.970757685152E-01
N 7.615048957181E-02 4.531140695892E-01 2.246664172511E-01
C -6.733338599407E-02 -4.624569906122E-01 2.662305430423E-01
H 1.267481382080E-01 -4.750795241978E-01 1.572259348537E-01
H 1.592371820190E-01 4.358137579202E-01 2.875384719283E-01
H 5.002142268762E-02 3.334335308829E-01 1.992792946331E-01
H -1.190511631569E-01 4.546068992791E-01 3.347435600646E-01
H -3.349198755013E-02 -3.395119742431E-01 2.967130365492E-01
H -1.509873126103E-01 -4.424963452318E-01 1.967119736514E-01
N 4.227536453832E-01 -4.644119255469E-02 2.250101787470E-01
C -4.337150617607E-01 3.811981347413E-02 2.662988766154E-01
H 3.708761019896E-01 2.637985080061E-02 1.585912389312E-01
H 4.492410692270E-01 -1.650611462456E-01 1.981285181203E-01
H 3.407507352325E-01 -6.587853410380E-02 2.885310190261E-01
H -3.805801792330E-01 -4.587610146654E-02 3.336128242256E-01
H -3.511209348410E-01 6.041979151559E-02 1.962396631603E-01
H -4.679205744626E-01 1.598326312310E-01 2.983755149825E-01
N -7.700694086996E-02 4.536271723451E-01 -2.753337131640E-01
C 6.669727762172E-02 -4.620459118487E-01 -2.341085794572E-01
H -1.287300644105E-01 -4.735678590354E-01 -3.418510943458E-01
H -5.071546059178E-02 3.348511805307E-01 -3.020995216470E-01
H -1.591259369720E-01 4.345277255189E-01 -2.118399533502E-01
H 1.197639951155E-01 4.539097282733E-01 -1.667705217502E-01
H 1.492749844964E-01 -4.399637821871E-01 -3.041966689449E-01
H 3.272574354024E-02 -3.401855763664E-01 -2.021175112454E-01
N -4.237900326404E-01 -4.681418235906E-02 -2.749725607435E-01
C 4.329724041640E-01 3.800205041394E-02 -2.333232759102E-01
H -3.737296749428E-01 2.428198091427E-02 -3.429442780106E-01
H -3.401734672637E-01 -6.322774247858E-02 -2.123872082209E-01
H -4.500455110699E-01 -1.669969060082E-01 -2.995195629410E-01
H 3.819316703952E-01 -4.414290171247E-02 -1.641420693686E-01
H 4.669839008508E-01 1.614857246573E-01 -2.037353930122E-01
```

H 3.486857014766E-01 5.685150024198E-02 -3.025325006047E-01 PbCl3-c, unconstrained optimization a 5.70612583 alpha 90.017465 b 5.47759452 beta 88.900074 c 5.62095787 gamma 90.036249 Pb 7.657462002782E-03 -6.743817175098E-04 4.718132080186E-02 Cl -4.886917770026E-01 -9.174980993197E-04 -1.057690293611E-02 Cl -6.116281690667E-02 4.992745583037E-01 -4.261306984132E-02 Cl 8.892642022943E-02 -8.136592053768E-04 -4.577551769271E-01 N 4.378247402566E-01 4.990376262231E-01 -3.177364675208E-01 C -4.452628390779E-01 4.993087587124E-01 4.453506041093E-01 H 2.583348050656E-01 4.987879891758E-01 -3.275734428964E-01 H 4.837627639927E-01 -3.483910389967E-01 -2.215802343100E-01 H 4.839785767175E-01 3.465256888672E-01 -2.217953207187E-01 H -4.983598081508E-01 -3.368980164560E-01 3.503820188030E-01 H -4.981153540962E-01 3.354445073763E-01 3.501348111177E-01 H -2.563981730302E-01 4.995604658161E-01 4.705608603184E-01

12. References

- 1. T. Ishiharat, J. Lumin., 1994, **61**, 269–274.
- 2. G. C. Papavassiliou and I. B. Koutselas, *Synth. Met.*, 1995, **71**, 1713–1714.
- 3. G. C. Papavassiliou, G. A. Mousdis, and G. C. Anyfantis, *Z. Naturforsch B*, 2010, **65**, 516–520.
- 4. J. Even, L. Pedesseau, J.-M. Jancu, and C. Katan, *J. Phys. Chem. Lett.*, 2013, **4**, 2999–3005.
- 5. F. Brivio, K. T. Butler, A. Walsh, and M. van Schilfgaarde, *Phys. Rev. B*, 2014, **89**, 155204.
- 6. E. Mosconi, A. Amat, K. Nazeeruddin, M. Gra, and F. De Angelis, *J. Phys. Chem. C*, 2013, **117**, 13902–13913.
- 7. G. Giorgi, J. Fujisawa, H. Segawa, and K. Yamashita, *J. Phys. Chem. Lett.*, 2013, **4**, 4213–4216.
- 8. P. Umari, E. Mosconi, and F. De Angelis, *Sci. Rep.*, 2014, **4**, 4467.
- 9. M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, *Phys. B*, 1994, **201**, 427–430.
- 10. F. Brivio, A. B. Walker, and A. Walsh, *APL Mat.*, 2013, **1**, 042111.
- 11. A. Poglitsch and D. Weber, *J. Chem. Phys.*, 1987, **87**, 6373–6378.