Supplementary Information

Wavelength- and Efficiency-Tunable Plasmon-Induced Charge Separation by the Use of Au-Ag Alloy Nanoparticles

Hiroyasu Nishi,^a Tsukasa Torimoto^b and Tetsu Tatsuma*^a

^a Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo

153-8505, Japan.

^b Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.

e-mail: tatsuma@iis.u-tokyo.ac.jp

Preparation of Au-Ag Alloy Nanoparticles

Au-Ag alloy nanoparticles with x = 0.25, 0.50, 0.70 and 0.90 were prepared as follows. Aqueous AgNO₃ (5.89 mM, $a \mu L$), aqueous trisodium citrate (9.30 mM, 3.33 mL) and ultrapure water (b mL) were mixed together according to Table S1, and then the mixed solution was heated at 90 °C for 10 min. To the solution was quickly added an aqueous solution containing HAuCl₄•4H₂O (2.42 mM, 266 μ L) with vigorous stirring. After 10 min, aqueous HAuCl₄•4H₂O (2.42 mM, c mL) was quickly added with vigorous stirring in 10 portions ($c/10 \text{ mL} \times 10 \text{ times}$) with interval of 5 min according to Table S1. After 5 min, the reaction solution was cooled to room temperature. Nanoparticles with x = 0 and 1 (Ag and Au nanoparticles) were not obtained by the present procedure.

Table S1. The Values for *a*, *b* and *c* for the Preparation of Au-Ag Alloy Nanoparticles with Different *x* Values

X	а	b	С
0.25	866	5.10	0.43
0.50	578	4.69	1.13
0.70	347	4.39	1.69
0.90	116	4.03	2.25

Fig. S1 (a) Extinction spectra of the TiO_2 electrodes loaded with the Au-Ag alloy NPs measured in water. (b) Dependence on the *x* value of the extinction peak wavelength of the alloy NPs in water (solid circles), that of the alloy NPs on TiO_2 in water (open circles) and the photocurrent peak wavelength of the TiO_2 electrode modified with the alloy NPs in the electrolyte (open squares).

Fig. S2 Time courses of photocurrents of the TiO₂ electrodes loaded with the Au-Ag alloy NPs (x = 0.25 and 0.02) upon irradiation at 480 nm (a) and 440 nm (b).