Distinct and Dramatic Water Dissociation on GaP (111) tracked by Near-Ambient Pressure X-ray Photoelectron Spectroscopy

Xueqiang Zhang^{a,b} and Sylwia Ptasinska^{a,c*}

^aRadiation Laboratory, ^bDepartment of Chemistry and Biochemistry and ^cDepartment of Physics, University of Notre Dame, Notre Dame, IN 46556, USA

Supplementary Information

Fig. S1 Photoelectron survey spectra of the GaP (111) surface for samples as received and after Ar⁺ bombardment.

Fig. S2 High resolution photoelectron spectra of Ga 2p_{3/2}, Ga 3d and P 2p at RT under different H₂O pressures. The photoelectron spectra for Ga 2p_{3/2} and P 2p were normalized to unit intensity of the main peaks and shifted to the same background lines.

Fig. S3 High resolution photoelectron spectra of Ga $2p_{3/2}$, Ga 3d and P 2p at the H₂O pressure of 0.1 mbar (0.5 mabr) and different temperatures. The photoelectron spectra for Ga $2p_{3/2}$ were normalized to unit intensity of the main peaks and shifted to the same background lines.

Fig. S4 High resolution photoelectron spectra of Ga $2p_{3/2}$ at the H₂O pressure of 5 mbar and RT (a) and at the H₂O pressure of 0.1 mbar and 773 K obtained within 4 hours (5 scans) (b).