Site and chirality selective chemical modifications of boron nitride nanotubes (BNNTs) via Lewis acid/base interactions

Rajashabala Sundaram^{1,2}, Steve Scheiner², Ajit K. Roy³ and Tapas Kar^{2*}

¹School of Physics, Madurai Kamaraj University, Madurai-625021, Tamilnadu, India ²Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA

³Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, United States

Table S1. Comparison of B3LYP/6-31G* and B3LYP/6-31+G* adsorption energies of BNNT-NH₃ and BNNT-BH₃ (see Figure 1-4 for structures). All energies are in kcal/mol.

	E _{ad}			
(4,4)-BNNT-NH ₃	6-31G*	6-31+G*		
1A	9.86	7.58		
1B	9.70	7.64		
1C	9.65	7.49		
1D	9.34	7.20		
(8,0)-BNNT-NH ₃				
2A	16.60	14.03		
2B	10.18	7.68		
2C	9.72	7.28		
2D	3.25	1.29		
(4,4)-BNNT-BH ₃				
3A	22.96	21.05		
3B	10.57	9.28		
3C	10.04	8.39		
3D	9.20	7.85		
(8,0)-BNNT-BH ₃				
4A	17.06	15.80		
4B	17.01	15.53		
4C	9.71	8.04		
4D	9.25	7.71		

Bond distance (R) Name of the 6-31+G* 6-31+G* 6-31G* Name of the 6-31+G* 6-31+G* 6-31G* (BSSE) System (BSSE) System (δR) (δR) (δR) (δR) (4,4)-BNNT-NH₃(1A)(8,0)-BNNT-NH₃(2A) 84 83 🛛 82 **8**3 84 81 71 13 28 3 22 68 N81-H84 1.021 -0.001 0.000 N81-H84 1.020 -0.001 -0.001 N81-H83 1.021 -0.001 -0.001 N81-H83 1.023 -0.001 -0.001 N81-H82 1.021 -0.001 -0.001 N81-H82 1.020 0.001 0.002 0.006 0.000 0.007 0.005 B21-N81 1.724 N81-B13 1.691 B21-N14 1.526 0.000 0.003 B13-N12 1.534 0.000 0.001 B13-H71 B21-N28 1.518 0.000 0.002 1.204 0.001 0.001 1.530 B21-N22 0.000 0.002 H68-B7 1.192 0.000 0.000 (4,4)-BNNT-NH₃(1B) (8,0)-BNNT-NH₃(2B) 82 83 82 83 81 30 31 13 14 12 9 69 N81-H84 N81-H84 1.021 -0.001 -0.001 1.021 0.000 0.000 N81-H83 1.022 -0.001 0.000 N81-H83 1.023 0.000 0.000 N81-H82 1.021 -0.001 0.000 N81-H82 1.021 -0.001 0.000 B11-N81 1.727 0.010 0.001 N81-B30 1.725 0.009 0.005 0.001 B11-N4 1.510 0.000 0.004 B30-N31 1.525 0.000 B11-N18 1.517 0.000 0.001 B30-N14 1.513 0.000 0.002 B11-N12 1.535 -0.001 0.002 H69-B9 1.193 0.001 0.000

Table S2. Bond distances and changes in distances (δR) of BH₃ adsorbed BN-nanotubes at the adsorption sites as well as at their neighbors. All distances are in Å.

Table S3. Bond distances and changes in distances (δR) of BH₃ adsorbed BN-nanotubes at the adsorption sites as well as at their neighbors. All distances are in Å.

Fig. S4. B3LYP/6-31+G* optimized structures of L-(8, 0)-BNNT-NH₃/BH₃. Blue, yellow and grey colors represent N, B and H atoms, respectively. m and e stand for middle and edge site respectively. Bond lengths are in Å. BSSE corrected adsorption energies (in kcal/mol) are given in parenthesis and a positive value indicates attractive interaction between two units,

Fig. S5. B3LYP/6-31+G* optimized structures of (12, 0)-BNNT-NH₃/BH₃. Blue, yellow and grey colors represent N, B and H atoms, respectively. m and e stand for middle and edge site respectively. Bond lengths are in Å. BSSE corrected adsorption energies (in kcal/mol) are given in parenthesis and a positive value indicates attractive interaction between two units,

Fig. S6. Hybridization angle (ϕ in degree) of BH₃ (sp²), NH₃ (sp³) and H₃BNH₃.(sp³). The dummy atom (pink) is used to show angles.

Fig. S7. Approximate hybridization angles (ϕ in degree) of B (Lewis acid centers) and N (Lewis base centers) sites in (4,4) and (8,0) BNNTs, The dummy atom (pink) is used to show angles.

Fig. S8. Hybridization angles (ϕ in degree) of BNNT-NH₃ complexes.

Fig. S9. Hybridization angles (ϕ in degree) of BNNT-BH₃ complexes.

Fig. S10. Natural bond orbitals (NBO) of B-N and B-H-B 3c-2e bonds of most stable BNNT-NH₃/BH₃ complexes. NBO representing multi-center B-H-B bond of B₂H₆ are shown in the last diagram.

Fig. S11. Density difference plots of most stable BNNT-NH₃/BH₃ structures. Blue and red regions indicate gain and loss of electron density, respectively, upon complex formation. Contour value is 0.005 au. Electron transfer from or to BNNTs are shown by arrow with number of electron.

Density difference plots clearly indicate charge gain (blue) or loss (red) is localized in the vicinity of the active site only. In all complexes, electron density builds between B and N atoms of host and guest, indicated by blue region and some gain is also noted on nitrogen of NH_3 in 1A and 2A. However, boron of BH_3 in 3A and 4A loses some density. Formation of 3c-2e bond in 3A (also in 4B, not shown) causes gain in density between $H(BH_3)$ and B(NT), while weakening of H_2B -H bond is reflected by the loss of density.

Table S12. Electron exchange between BN-nanotubes and NH_3/BH_3 in complexes. Natural (NPA) group charges are obtained from B3LYP/6-31G* calculations.

(4,4)-BNNT-NH ₃		(8,0)-BNNT-NH ₃		
1A	$\text{NH}_3 \xrightarrow{0.33 \text{ e}} (4,4) \text{ BNNT}$	2A.	$\text{NH}_3 \xrightarrow{0.34 \text{ e}} (8,0) \text{BNNT}$	
1B	$\text{NH}_3 \xrightarrow{0.32 \text{ e}} (4,4) \text{BNNT}$	2B	$\text{NH}_3 \xrightarrow{0.33 \text{ e}} (8,0) \text{BNNT}$	
1C	$\text{NH}_3 \xrightarrow{0.33 \text{ e}} (4,4)\text{BNNT}$	2C	$\text{NH}_3 \xrightarrow{0.33 \text{ e}} (8,0) \text{BNNT}$	
1D	$\text{NH}_3 \xrightarrow{0.33 \text{ e}} (4,4)\text{BNNT}$	2D	$\text{NH}_3 \xrightarrow{0.33 \text{ e}} (8,0)\text{BNNT}$	
(4,4)-BNNT-BH ₃		(8,0)-BNNT-BH ₃		
3A	0.11e			
	$BH_3 \leftarrow 0.11C$ (4,4) BNNT	4A	$BH_3 \xrightarrow{0.30 e} (8,0)BNNT$	
3B	$BH_3 \xleftarrow{0.11c} (4,4) BNNT$ $BH_3 \xrightarrow{0.26e} (4,4) BNNT$	4A 4B	$BH_3 \xrightarrow{0.30 e} (8,0)BNNT$ $BH_3 \xleftarrow{0.14 e} (8,0)BNNT$	
3B 3C	$BH_{3} \xleftarrow{0.11e} (4,4) BNNT$ $BH_{3} \xrightarrow{0.26e} (4,4) BNNT$ $BH_{3} \xleftarrow{0.10e} (4,4) BNNT$	4A 4B 4C	$BH_{3} \xrightarrow{0.30 e} (8,0)BNNT$ $BH_{3} \xleftarrow{0.14 e} (8,0)BNNT$ $BH_{3} \xrightarrow{0.22 e} (8,0)BNNT$	

Fig. S13. B3LYP/6-31+G* optimized structures of H₃N-AlH₃ and corresponding BNNT-AlH₃. Bond lengths are in Å and angles are in degree. e and m stand for edge and middle adsorption sites of the tube, respectively. BSSE corrected adsorption energies (in kcal/mol) are given in bold and a positive value indicates attractive interaction between two units, otherwise interaction is repulsive. Electron transfer from or to BNNTs are shown by arrow with number of electron.

Fig. S14. B3LYP/6-31+G* optimized structures of H_3N -BF₃ and corresponding BNNT- BF₃. Bond lengths are in Å and angles are in degree. e and m stand for edge and middle adsorption sites of the tube, respectively. BSSE corrected adsorption energies (in kcal/mol) are given in bold and a positive value indicates attractive interaction between two units, otherwise interaction is repulsive. Electron transfer from or to BNNTs are shown by arrow with number of electron.

Fig. S15. B3LYP/6-31+G* optimized structures of H₃N- BCl₃ and corresponding BNNT- BCl₃. Bond lengths are in Å and angles are in degree. e and m stand for edge and middle adsorption sites of the tube, respectively. BSSE corrected adsorption energies (in kcal/mol) are given in bold and a positive value indicates attractive interaction between two units, otherwise interaction is repulsive. Electron transfer from or to BNNTs are shown by arrow with number of electron.

Fig. S16. B3LYP/6-31+G* optimized structures of H_3N -B H_2CH_3 and corresponding BNNT- B H_2CH_3 . Bond lengths are in Å and angles are in degree. e and m stand for edge and middle adsorption sites of the tube, respectively. BSSE corrected adsorption energies (in kcal/mol) are given in bold and a positive value indicates attractive interaction between two units, otherwise interaction is repulsive. Electron transfer from or to BNNTs are shown by arrow with number of electron.

	BNNT as Lewis Base (LB)				Models	
	(4,4)		(8,0)		NH ₃ as LB	
Lewis acids	E _{ad}	E _{ad(CP)}	E _{ad}	E _{ad(CP)}	E _{ad}	E _{ad(CP)}
$BH_3(e)$	21.1	20.0	15.8	14.7	30.1	28.3
$BH_{3}(m)$	9.3	8.3	8.0	7.0		
$BF_{3}(e)$	3.9	1.0	10.1	6.9	23.6	20.7
$BF_{3}(m)$	3.3	1.1	2.6	0.6		
$BCl_3(e)$	0.8	2.4	8.2	4.6	24.3	21.2
$BCl_3(m)$	-8.9	-13.1	-10.4	-14.4		
$BH_2CH_3(e)$	2.7	1.4	7.7	6.2	23.3	21.3
$AlH_3(e)$	20.7	19.0	16.8	15.1	27.7	26.0
$AlH_{3}(m)$	10.8	8.9	9.9	8.1		
$CH_{3}^{+}(e)$	110.5	109.2	115.4	113.8	112.2	109.8
$CH_3^+(m)$	112.0	110.6	108.7	107.3		
Lewis base	BNNT as Lewis Acid (LA)			BH ₃ as LA		
$NH_3(e)$	7.2	4.6	14.0	11.4	30.1	28.3
$NH_3(m)$	7.6	4.6	7.7	4.7		
$NH_2CH_3(e)$	8.9	6.6	13.9	11.5	33.8	32.4
$NH_2CH_3(m)$	9.6	6.7	10.0	7.1		
NH ₂ COOH					13.4	12.2
H-Bond						
$NH_2COOH(e)$	5.0	2.8	8.9	7.8	12.8	11.2
$NH_2COOH(m)$	5.0	4.1	4.0	2.0		
NH ₂ COOH (m1)			2.4	0.9		

Table-S17. Effects of BSSE correction on adsorption energies; non-corrected energy (E_{ad}) and CP-corrected adsorption energies ($E_{ad(CP)}$). All energies are in kcal/mol.