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LLTO systems with low lithium contents (x ≤ 0.08) have predominately been found to adopt 

an orthorhombic structure and at lithium contents above this, a tetragonal structure forms20, 

space group P4/mmm, figure 1a. The unit cell of LLTO is made from TiO6 octahedra and the 

A-cation cages are formed by 12 oxygen ions belonging to octahedra21,22, see figure 1a. It is 

difficult to describe the defect nomenclature based on the La2/3TiO3 lattice and thereby to 

ensure a consistent notation and set of effective charges. Nevertheless, to describe point 

defects using Krӧger-Vink notation23 the A2+B4+O3 stoichiometry of the parent structure will 

be used. The La3+ ions randomly populate the A-sites ( • ), however, there is a small degree 

of ordering forming rich and poor •   layers along the c-axis. Lithium ions and A site 

vacancies also occupy the A-sites, leaving a network of Li  and	  available for lithium ion 

migration7. In the notation chosen for this representation the neutrality condition becomes; 

 

                                                   2 	 Li 	 La• 	                                                        (2) 

 

The effect of the •  layering is of particular importance to the migration and movement of 

 ions between the layers24. The degree of ordering of cations and vacancies on the A-sites 

in the layers strongly influences the crystal structure and Li ion conductivity17 and it is 

important to define the stoichiometry, degree of ordering and crystal structure when 

comparing conductivity results. The crystal is described as having rich and poor La layers17 

and an order parameter describing the degree of order is defined as 
	

 

Where 	and  are the occupancies of the A-sites by La3+ ions in a structure with 

ordered La-rich layers and a disordered structure respectively. For structures where S=0, the 

ions are completely disordered and the diffusion is isotropic. However, when S=1 the La rich 
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planes are fully occupied and the diffusion is restricted to the La poor planes perpendicular 

the c-axis. The layering effect is an important structural feature since the migration energy 

barrier for Li+ ions will depend upon the individual local environment of each of the A-sites 

along the percolating Li  and	   network. As such, there will be no single activation energy 

for diffusion to describe the transport of Li+ ions. Therefore, the distribution of the Li 	and	   

in and between the layers is investigated in this work. 

 

In the following section the methodological aspects of the current work are provided. The 

simulations described within the paper were performed using a simulation box based on a 

14⨉14⨉14 La⅔TiO3 super-cell into which 	    and Li  defects were introduced to give a 

composition of La⅔-xLi3xTiO3-x with x=0.115. An initial set of atomic configurations was 

generated such that these defects were distributed at random across the La sites of the perfect 

La⅔TiO3 structure. In order to better understand which defect arrangements gave high Li ion 

mobility a genetic algorithm (GA) was employed to search for high diffusivity atomic 

configurations (the details of which are given below).   

Systems with S parameter values between 0.0 and 0.8 were refined using the GA.  

Following GA optimisation runs, structures with the highest Li diffusivities were equilibrated 

further using molecular dynamics (MD) within the temperature range 400-1200K before final 

MD data-collection runs were performed. 

 The specific details of the genetic algorithm are now given, after which the MD 

equilibration and data-collection stages of the process are described. The methodology then 

concludes with a description of the pair-potential model and how it was developed for this 

work. The potentials are particularly important as they describe the interatomic forces within 

the MD simulations underpinning the GA and data-collection runs. 

Genetic algorithms aim to mimic the processes of Darwinian evolution. An initial set 

(or population) of possible solutions to a problem are generated, and over a series of 

iterations, these are combined using methods imitating sexual reproduction, by which child 

solutions inherit characteristics from the parents from which they were generated.   

At the heart of the method is the principle of 'survival of the fittest', through which 

population members yielding desirable properties (in this case, high ionic conductivity), are 

preferentially selected when choosing the parents used to produce the next generation of 

solutions. By favouring population members with favourable attributes, such as high Li  



mean squared displacement, these characteristics should become increasingly prevalent 

within the population whilst deleterious features will die out as the algorithm progresses. 

Therefore, over a number of iterations progressive refinement of the solutions may occur.  

The method by which pairs of atomic structures were chosen as parents of structures 

for the following iteration of the genetic algorithm is known as selection. Within the present 

work roulette wheel selection was employed27. As its name suggests this method is 

conceptually similar to the roulette wheel within a casino; a notional wheel is divided into 

segments, one belonging to each member of the GA's population. A random number is 

chosen, representing a ball spinning within the wheel. The segment in which this conceptual 

ball lands, is used to select a parent structure. 

At each iteration of the GA, a fitness value was calculated for each structure in the 

population (here Li ion mean squared displacement was used, see below). In roulette wheel 

selection each wheel segment is scaled to be proportional to its candidate's fitness value.  In 

this way, the structures are effectively ranked, with those yielding higher Li mean squared 

displacement have a higher probability of selection (as their larger segments on the wheel 

provide a larger target for the notional roulette ball). Although structures with smaller MSDs 

are less likely to be selected, it can still occur, this is important as it helps to ensure that 

variety is maintained within the population; without this, it is possible the population to 

effectively become a set of facsimiles of only a small number of structures and for the 

algorithm to become stuck in a local minimum (the biological equivalent of this would be in-

breeding). 

The particular characteristics of each population member are encoded as a set of 

chromosomes and the set of chromosomes that encode for each population member are 

referred to as the genome. In the context of the current problem, the layered nature of LLTO 

affords a natural mapping between the crystal structure and the concept of chromosomes: a 

single chromosome within the GA represented each ab layer of the La sub-lattice. 

As the simulation box used was a super-cell constructed from 14⨉14⨉14 individual 

unit-cells, the La sub-lattice contained 14 layers and each layer contained 196 sites (including 

all the La, Li  and 	  species within the layer). The initial cell, before Li and vacancies were 

assigned therefore had the following composition La2744Ti2744O8232;	 initial	 simulation	 cell	

lengths	 of	 a=b=54.18Å and c=54.46Å were used. This initial configuration meant that 

within the genetic algorithm, each atomic configuration was described as 14 lists each 



containing 196 entries. Each list entry was one of La, Li  or 	 , with the number of each of 

these species chosen to give the desired composition. Further, the composition of each layer 

was chosen to give the appropriate disorder parameter (S) such that alternating rich and poor 

layers were described.  

A GA population size of 100 configurations was used. The initial population (i.e. the 

atomic structures representing the first generation), was initialised by randomly assigning 

	 , Li  and La across each structure's layer chromosomes to give the desired composition 

and S parameter. 

As the aim of the genetic algorithm was to search for arrangements of Li  and 	   

giving rise to high ionic conductivity the fitness criterion used during selection was each 

structure’s Li mean squared displacement (MSD). High MSD values yield high ionic 

conductivities; as a result those population members whose structural characteristics gave rise 

to high MSD values were favoured during selection. 

At each iteration, Li MSD values were obtained for each structure from MD 

calculations with a simulated duration of 5ps at a temperature of 1000K. Given the relatively 

slow convergence typical of genetic algorithms and the significant number of calculations 

required at each iterations, this relatively high simulation temperature was chosen in order to 

allow the method to remain computationally tractable; at 1200K significant Li diffusion is 

observed even over these relatively short simulation times. During the MSD simulations an 

integration time-step of 4fs was used. 

Within the GA successive generations are obtained by selecting pairs of structures 

(parents) that are combined to form the next population of structures. In combining the two 

parents the intent is to obtain resultant structures that have characteristics of both parents. 

Given that parents are preferentially selected on the basis of high Li mobility, assuming the 

structural characteristics, giving rise to the high mobilities are maintained in the child 

structure, then properties superior to either parent may be obtained. Through this mechanism, 

significant increases in Li ion migration were obtained after several iterations of the genetic 

algorithm (see the main text). In order for this to occur a method for effectively combining 

two structures was required. In the present work, single-point crossover was adopted27.  

In single-point crossover, each parent structure is effectively bisected at a randomly 

chosen lattice site, in so-doing two sections are formed: one for sites occurring before the 



bisection point and one after (henceforth referred to as A and B). Two children are formed 

from these by swapping section B between the two parents. Referring to each parent as M 

and F respectively, this process yields the following child structures:  AMBF and AFBM.  

In terms of the genome description of the problem, crossover is achieved by selecting 

one of the fourteen La layers/chromosome and then picking a random bisection point within 

the 196 item list which encodes that 	 , Li , LaLa layer within the algorithm. For each 

generation a crossover rate of 0.9 was used, meaning that 90% of the configurations were the 

result of cross-over, the remaining 10% were inherited directly from the previous generation.  

Whilst each La layer has a set composition, there can be considerable spatial 

inhomogeneity across a layer. This means that, although it is straightforward to swap entire 

layers lying before and after the crossover bisection point, swapping the layer portions within 

the bisected layer creates child layers that are most probably different in composition to its 

parents. For this reason, the structures resulting from cross-over underwent a compositional 

correction step: within the bisected layers, 	   and Li  species were randomly added or 

removed as necessary to return the layer to its parent's composition. It should be noted that 

this effectively represents an implicit structural mutation that acts in addition to the explicit 

mutation methods described next.  

Mutation is used within GAs to preserve and increase the variety of the population. In 

order to avoid the genetic algorithm from getting trapped in shallow local minima, structural 

mutations were introduced following cross-over. In addition to the implicit mutation that 

results from the crossover composition correction, two additional mutations were used. The 

first involved in-layer swaps where heterogeneous pairs of La, 	   and Li  species were 

swapped within the same layer. This mutation was applied with a 5% mutation rate meaning 

that 27 swaps were performed within 5 of the structure's 14 layers. The second mutation 

involved entire layers of the La sub-lattice being swapped, allowing the algorithm to explore 

layer ordering effects more effectively. In order to maintain the correct rich-poor layer 

ordering, rich layers were only swapped with other rich layers, likewise a poor layer could 

only be swapped with another poor layer.  

For each child structure, only one of these two mutation methods was chosen at 

random and applied to 2% of the structures within each generation's population.  



After the GA had been run for 20 generations the ten configurations exhibiting the 

highest Li MSD values were selected from the final population for further MD equilibration 

and data collection stages. The results of these runs form the basis of the results presented 

within the main text. MD simulations were performed at 100K intervals for temperatures in 

the range 400K to 1200K. Prior to each data collection run, the system was equilibrated for 

20 ps in the NPT ensemble using a Nosé-Hoover thermostat and barostat45-47 to bring the 

system to temperature and to allow the system volume to relax. This was followed by another 

100 ps of dynamics during which atomic positions were sampled every 100 fs. In comparison 

to the GA MSD runs, these data-collection runs used a shorter time-step of 1fs. 

Molecular dynamics allows the trajectories of a set of atoms to be predicted as a 

function of time by integrating Newton's laws of motion (here MD calculations were 

performed using the DL_POLY code42). Key to the method's success is an accurate 

description of the forces acting between atoms. Here, a classical Born43 description of the 

crystal lattice was used and long range electrostatic interactions were calculated using the 

Ewald sum44 and short range interactions were described using effective pair potentials to 

give the energies between pairs of anions and anion-cation pairs. These were described using 

the Buckingham form41, where two ions i and j, separated by a distance  interact with an 

energy,  , given by, 

                                    (3) 

where, A, ρ and C are parameters specific to pairs of interacting species. Initial calculations 

(see main text) used the potential parameters of Cleave30. These potentials were found to 

reproduce the thermal properties of LLTO with insufficient fidelity. As a result, a new 

potential model was derived via an empirical multi-compound approach: potential parameters 

were adjusted, iteratively, to improve the quality of the model's ability to predict 

experimental property values, namely unit-cell parameters, elastic constants and thermal 

expansion coefficients. By fitting to several structures at once, the aim was to produce a 

robust model that could describe a wide range of atomic environments over a large 

temperature range. For this reason that stannate and zirconate materials, in addition to the 

more obvious binary oxide lithium, lanthanum and titanate compounds were used within the 

fitting procedure. Even though they are not directly relevant to LLTO they helped to improve 

parameters for the La-O, Li-O and O-O interactions. 



Initially fitting was performed against the structures of Li2O, Li2TiO3, La2O3, Li2ZrO3, ZrO2, 

SnO2, La2Sn2O7, La2Zr2O7 and TiO2 (rutile) by using static energy minimisation within the 

GULP code. The database of fitting properties additionally included bulk-moduli for the 

Li2O, La2O3 and TiO2 structures. In order to capture temperature dependent effects, MD runs 

were used to fit against the thermal expansion coefficients of TiO2, Li2TiO3, Li2ZrO3, Li2O 

and La2O3. The potential parameters resulting from this fitting procedure are given in table 1. 

For both potential models a short-range cut-off of 10Å was used (beyond which short range 

interactions are considered to be negligible).  

 

Table 1: Buckingham39 short-range potential parameters produced for this work. 

 

Species A (eV) ρ (Å) C (eVÅ6)
O-1.4 - O-1.4 4869.99 0.24019 27.22

La2.1 - O-1.4 14509.63 0.24381 30.38

Ti2.8 - O-1.4 689.14 0.31628 0.00

Li0.7 - O-1.4 876.86 0.24426 0.00

 
 

 

Ionic diffusion is predicted by tracking the mean square displacement (MSD) of ions as a 

function of time for the temperature range. At time t the MSD of an ion i at a position ri(t) at 

time t with respect to its initial position ri(0) is, 

 

where N is the total number of ions in the system. 

 

The diffusion coefficient, D, is calculated directly from the slopes of MSD in the given 

temperature range: 

  

〈|ri(t) − ri(0)|2〉 = 6 Dt + B 

where |ri(t) − ri(0)| is the displacement of an oxygen ion from its initial position and B is an 
atomic displacement parameter attributed to thermal vibrations. 

 
 



	
 

Figure 1 Plot showing the correspondence of Li diffusivity (D) and potential energy for each 

configuration in random and GA optimised populations. Within each population, the ten 

configurations with the highest diffusivities are highlighted with larger points. Rug plots 

attached to the top and right hand margins give an impression of the energy and diffusivity 

distribution within each population. In order to highlight their position within each, the ten 

configurations with the highest diffusivities are coloured in the rug plots with the remaining 

points given in grey. 

 

 

Within this work, a genetic algorithm has been used to obtain structures with high 

diffusivities. Following a GA run, the ten configurations from each population, with the 

highest Li diffusivities were used for further analyses. The structural optimisation made by 



the GA was based solely on the Li MSD extracted from each structure. That is, the energy of 

each configuration was not included as part of the GA's merit function. This could present an 

issue if the structures obtained from the GA had abnormally high lattice energies, as they 

would be unlikely to form, even at the high temperatures typical of ceramic processing 

operations. If so this would mean that the information extracted from their study may be of 

only limited use. 

 

In order to better understand the correspondence between Li diffusivity and the energy of the 

optimised structures, potential energy (normalised per unit-cell) is plotted against Li 

diffusivity for each configuration in the GA optimised population inFig. 1.  These are plotted 

for S=0.0, 0.1 and 0.3 as circles. In order to provide a point of reference, for each S value, 

diffusivity and energies were plotted for an equivalent population of randomly generated 

structures as crosses inFig. 1. Values were obtained at T=1000K, structures were initially 

equilibrated in the NPT ensemble for 25ps before undergoing 50ps of NVE dynamics. 

Energies were averaged over the course of this NVE period and the Li diffusivity values were 

also measured over this 50ps period. 

 

In order to understand the energy and diffusivity distributions within each population rug 

plots have been attached to the top and right hand sides of the figure These serve a similar 

purpose to histograms: each line within the rug plots corresponds to a point in the scatter plot 

and the density of these lines is easily observed allowing the overall shape and range of the 

distributions to be judged.  

 

Within the energy distributions at the top of Fig. 1, it can be seen that for both the random 

and GA populations, the S=0.3 structures tended to have the lowest energies, followed by 

S=0.1 and S=0.0 whose distributions appear translated along the energy axis to higher values. 

Comparing the random and GA optimised distributions, the GA energies span wider range. 

Interestingly, in the case of the S=0.1 and 0.0, the modal values for these distributions are 

very similar to their respective random populations (indicating that the increased energies 

only affect a relatively small number of GA population members). The effect of the GA on 

the S=0.1 population was to widen and shift the distribution to higher energies, when 

compared to the random distribution. In order to highlight the correspondence between high 

diffusivity and system energy, the bars for the configurations with the top ten highest 



diffusivities have been highlighted in colour for the GA and random populations respectively 

(the other bars are given in grey). 

 

It should be noted that the majority of the top ten diffusivities lie within the higher energy 

region of the energy rug-plots, showing that the best GA optimised structures show a slight 

bias to higher energies. Notwithstanding this, it should be noted that the difference in energy 

between the highest and lowest energies, across all structures, was only on the order of 0.1 

eV. Furthermore, for S=0.0 six of the top ten points lie within the energy bounds of its 

respective random distribution. Similarly, eight of the ten points intersect the random 

distribution energy ranges for S=0.1 and 0.3. In general, it can be concluded that the 

structures obtained using the GA technique have comparable energies to those chosen from a 

random distribution (it should be noted that other computational studies employ randomly 

selected configurations). In addition, the narrow range of energies observed is consistent with 

the range of thermal energies experienced during high temperature ceramic processing. It  

therefore seems plausible that structures, with energies on the order of those obtained using 

the GA, may be kinetically stabilised on cooling from the high temperatures typically used 

during ceramic manufacture and would therefore be expressed in LLTO materials, even at 

room temperature. The study of the GA generated structures should therefore provide 

genuine insight into the mechanisms and properties of these materials. 
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