Evidence of graphene like Sn-Sheet on Au(111) substrate: Electronic structure and transport properties from first principles calculations

Sandeep Nigam^{1,2}, Sanjeev Gupta^{1,}, Douglas Banyai^{1,}, Ravindra Pandey^{1*}and Chiranjib Majumder^{2*}

¹Department of Physics, Michigan Technological University, Houghton, Michigan 49931 ²Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

Supporting Information

Table-S1: Comparison of binding energy relevant gas phase dimers.

(Expt. Values : 2002 CRC Handbook of Chemistry and Physics, 83rd ed.; (CRC Press: Boca Raton, FL))

	Binding Energy, eV		Bond Lengh, A	
	This work	Exp	This work	Exp
Sn-Sn	2.36	2.04	2.80	2.76
Au-Sn	2.94	2.49	2.51	
Au-Au	2.38	2.31	2.52	2.47

Table-S2: Comparison of bader charge on Sn-Au systems.

	bader Charge on Sn	
	atom	
Sn-Au dimer	+1.33	
Sn@Au(111)	+2.06	
	+1.82	
Sn2@Au(111)	Per Sn atom	

Species	Binding energy(eV) (gas phase)	Adsorption energy(eV)
Sn atom	-	-3.35 ^{&}
2 Sn atoms adsorbed separately as atomic tin placed far apart (3-4 Å away; two neighboring fcc site) on the Au (111)surface	-	-4.33 ^{\$}
Sn ₂ dimer (The two Sn atom adsorbed on surface with a Sn- Sn bond)	-2.36 eV	-4.41 ^{\$}

Table-S3: Comparison of DOS spectrum for the adsorption of Sn/Sn₂ on Au(111) surfaces.

[&]Adsorption energy for single Sn atom adsorption on Palladium surface $\Delta E = E [Sn/Au(111)] - E[Au(111)] - E(Sn atom)$

^{\$}Adsorption energy for Sn₂ adsorption on Palladium surface $\Delta E = E[Sn_2/Au(111)] - E[Au(111)] - E[Sn_2 dimer)]$

Figure S1: Top, HCP and FCC sites on the Au (111) surface

Figure –S2: The iso-surface density of $Sn_2@Au111$ in (a) far apart (b) bonded case. In both case charge has been transferred to nearby gold atoms.

Figure -S3: The DOS of Sn atom and Sn₂ in (a) gas phase (b) deposited on gold surface.

Figure S4: Sn Sheet in free state (buckled) compare with the planar Sn sheet obtained by single point calculation on isolated tin sheet detached from Sn@Au(111) configuration.

Figure S5. (Color online) (left) A schematic illustration of the STM-like setup for the electron. Transport calculations: Sn monolayer deposited on Au. (right) top view of the monolayer lattice commensurate with that of Au (111) surface.