Electronic suplementary information (ESI) for:

How can $[Mo^{IV}(CN)_6]^{2-}$, an apparently octahedral (d)² complex, be diamagnetic? Insights from quantum chemical calculations and magnetic susceptibility measurements.

Mariusz Radoń*, Paweł Rejmak, Magdalena Fitta,

Maria Bałanda, and Janusz Szklarzewicz*

List of Tables

S1	Spin states of two-center model	S4
S2	Structural parameters of $[Mo(CN)_6]^{2-}$	S5
S3	Singlet–triplet relative energy for the octahedral structure	S6
S4	Energy gain from the distortion of octahedron to trigonal prism $\ldots \ldots \ldots$	S6
S5	Composition of the singlet state from CASSCF calculations	S13
S6	Occupation numbers of selected natural orbitals	S13
S7	Free energy corrections to the relative spin-state energetics	S14
S8	Relative energies w/o and w/ SOC for the oct. geometry $\hdots \hdots \$	S15
S9	Relative energies w/o and w/ SOC for the D_{3h} tp geometry $\ldots \ldots \ldots$	S16
S10	Relative energies w/o and w/ SOC for the C_{2v} tp geometry	S17
S11	Atomic coordinates of $[Mo(CN)_6]^{2-}$, singlet state (spin-restricted)	S18
S12	Atomic coordinates of $[Mo(CN)_6]^{2-}$, singlet state (spin-unrestricted)	S18
S13	Atomic coordinates of $[Mo(CN)_6]^{2-}$, triplet state $\ldots \ldots \ldots \ldots \ldots$	S19
S14	Atomic coordinates of $[Mo(CN)_6]^{3-}$, quartet state	S19
S15	Atomic coordinates of $[Mo(CN)_6]^{3-}$, doublet state	S19
S16	Atomic coordinates of $[MoCl_6]^{2-}$, triplet state $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	S20
S17	Atomic coordinates of $[MoCl_6]^{2-}$, singlet state (spin-unrestricted)	S20
S18	Atomic coordinates of model in Figure S1	S20

S19	Z-matrix used to define twisted structures	S21
S20	Comparison of experimental and calculated $\nu_{\rm CN}$ bands $\ldots \ldots \ldots \ldots$	S23

List of Figures

S1	Two-center model to estimate the nearest-neighbor magnetic coupling	S4
S2	Geometry optimizations of slightly distorted octahedra	S7
S3	IRC path for octahedron $\rightarrow {\rm prism}$ transformation, restricted singlet state	S8
S4	IRC path for octahedron $\rightarrow {\rm prism}$ transformation, unrestricted singlet state $% {\rm ext}(x)$.	S9
S5	IRC path for octahedron \rightarrow prism transformation, triplet state	S10
S6	Natural orbitals and corresponding orbitals from U-DFT	S11
S7	CASSCF active orbitals	S12
S8	Constraint applied to fix the twist angle coordinate	S22
S9	Uncorrected magnetic susceptibility of $1 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	S26

Other supporting materials

(provided as separate files)

- Pseudopotentials used in periodic DFT calculations and computationally optimized crystal structures.
- Animated movies of IRC paths and MD trajectories.

Figure S1: Structure of the two-center model $[Mo(CN)_6]^{2-} \cdots H_2O \cdots [Mo(CN)_6]^{2-}$ used to estimate the magnetic coupling between the neighboring Mo centers in the crystal structure of **1**. Atomic coordinates are based on the crystal structure (except for H atoms in the water moleculewhich were adjusted as explained in the main article) and can be found in Table S18. Annotated numbers are the CN…HO and Mo…Mo distances in Å.

	Total spin state	
	$S_{\rm tot} = 0$	$S_{\rm tot} = 2$
	$(\uparrow\downarrow \text{ coupling})$	$(\uparrow\uparrow \text{ coupling})$
BP86/def2-SV(P)	0.10	0.00
B3LYP/def2-SV(P)	0.11	0.00
$B3LYP/(ma)-TZVPP^{b}$	0.04	0.00

Table S1: Relative energy (kcal/mol) of spin states of the two-center model.^a

^{*a*}The model is shown in Figure S1. The considered spin states are obtained by antiparallel ($\uparrow\downarrow$, singlet) or parallel ($\uparrow\uparrow$, quintet) coupling of the two $S_1 = S_2 = 1$ spins, one on each Mo center. The spin-unrestricted results for the singlet state are not corrected for spin contamination, but since the quintet is below the singlet from the begining, the correction is expected to further raise the singlet up in energy. ^{*b*}def2-TZVPP (for Mo,H) or ma-TZVPP (for C,N,O).

	Octahedral	Trigonal prismatic		
Singlet (spin-restricted)				
Symmetry	D_{4h}	D_{3h}		
Energy min.	no	yes		
Imag. freq. (cm^{-1})	$i250(b_{2u})$	_		
	$i215\left(a_{2u}\right)$			
	$i96\left(e_{u}\right)$			
Mo-C (Å)	$2.131(\times 2), 2.172$	2.103		
$\rm C-N(Å)$	$1.181(\times 2), 1.175$	1.177		
Sin	glet (spin-unrestric	ted)		
Symmetry	D_{4h}	C_s		
Energy min.	no	yes		
Imag. freq. (cm^{-1})	$i157(e_{u})$	_		
Mo-C (Å)	$2.155(\times 2), 2.152$	2.096, 2.125, 2.126		
$C-N(\hat{A})$	1.177	1.176		
	Triplet			
Symmetry	D_{4h}	C_{2v}		
Energy min.	no	yes		
Imag. freq. (cm^{-1})	$i156(e_u)$	_		
Mo-C (Å)	$2.160(\times 2), 2.161$	$2.151(\times 2), 2.092$		
C-N (Å)	$1.177(\times 2), 1.176$	$1.175(\times 2), 1.176$		
$Crystal\ structure\ of\ 1$				
Symmetry	O_h			
Mo-C (Å)	2.090			
C-N (Å)	1.137			

Table S2: Calculated^{*a*} and experimental structural parameters of $[Mo(CN)_6]^{2-}$.

^aDFT:BP86/def2-TZVP level.

Table S3: Singlet-triplet relative energy (kcal/mol) for the octahedral geometry of $[Mo(CN)_6]^{2-}$, either the experimental one or the one optimized at the DFT level (for each spin state separately) under the D_{2h} symmetry constraints to keep it (approximately) octahedral.

	exptl	optimized under D_{2h}
PBE0	15.8	14.8
B3LYP	14.0	12.8
BP86	12.4	11.8
PBE	12.2	11.5

Table S4: Energy gain (kcal/mol) from the distortion of octahedral to trigonal prismatic structure of $[Mo(CN)_6]^{2-}$ in the triplet state.^{*a*}

	ΔE
B3LYP	7.3
B3LYP*	8.5
OLYP	12.9
BP86	12.3
PBE	13.5
B2PLYP	9.0
$CCSD(T)^b$	8.0
$CASPT2^{c}$	12.1

^{*a*}The octahedral structure is the one optimized at the DFT level under the D_{2h} symmetry constraints. ^{*b*}For DFT:BP86 structures and basis set (B). ^{*c*}(6,7) active space, ANO-I basis, IPEA=0.25.

Figure S2: Energy profile of symmetry-unconstrained geometry optimizations for singlet and triplet states of $[Mo(CN)_6]^{2-}$, and selected structures for the triplet state. The singlet state is taken either from restricted (R) or unrestricted (U) calculations; note that energy shown in this plot is *not* corrected for spin contamination. The initial point of each optimization is the octahedral geometry of D_{4h} symmetry (technically, optimized under the D_{2h} symmetry constraints) slightly distorted along the imaginary-frequency mode of e_u symmetry to move out the system from the unstable stationary point. The initial distortion (corresponding to T = 1 K) was done with screwer utility from the Turbomole suite.

Figure S3: Energy profile at the DFT:BP86/def2-TZVP level along the reaction coordinate transforming the octahedral to the trigonal prismatic form of $[Mo(CN)_6]^{2-}$ in the singlet state (S = 0) from *spin-restricted* calculations. Shown are two consecutive IRC pathways (IRC-1, IRC-2) and the final geometry optimization starting from the end point of IRC-2. Animated visualization is available as a separate movie file.

Figure S4: Energy profile at the DFT:BP86/def2-TZVP level along the reaction coordinate transforming the octahedral to the trigonal prismatic form of $[Mo(CN)_6]^{2-}$ in the single state (S = 0) from *spin-unrestricted* calculations. Shown are three consecutive IRC pathways (IRC-1, IRC-2, IRC-3) and the final geometry optimization starting from the end point of IRC-3. Animated visualization is available as a separate movie file.

Figure S5: Energy profile at the DFT:BP86/def2-TZVP level along the reaction coordinate transforming the octahedral to the trigonal prismatic form of $[Mo(CN)_6]^{2-}$ in the triplet state (S = 1). Shown are three consecutive IRC pathways (IRC-1, IRC-2, IRC-3) and the final geometry optimization starting from the end point of IRC-3. Animated visualization is available as a separate movie file.

Figure S6: Contour plots of fractionally occupied natural orbitals (a) and corresponding orbitals (b) from unrestricted DFT:BP86 calculations for the open-shell singlet state; contour value ± 0.04 (a.u.); natural orbitals occupations and an overlap integral between the corresponding orbitals are annotated.

Figure S7: Contour plots of the CASSCF (16,15) active orbitals – average orbitals for the 6 singlet states originating from the $(a'_1, e')^2$ configuration; contour value ± 0.04 (a.u.)

Configuration	Weight $(\%)$
$(a'_{1,z^2})^2 (e'_{xy})^0 (e'_{x^2-y^2})^0$	89.1
$(a'_{1,z^2})^0 (e'_{xy})^2 (e'_{x^2-y^2})^0$	2.8
$(a'_{1,z^2})^0 (e'_{xy})^0 (e'_{x^2-y^2})^2$	2.8
Remaining	5.3

Table S5: Composition of the lowest singlet root in CASSCF calculations for the D_{3h} trigonal prismatic structure of the singlet state.

Table S6: Occupation numbers of selected natural orbitals in the lowest singlet state obtained from CASSCF and unrestricted DFT calculations (U-DFT).

	a'_1	e	/
	d_{z^2}	d_{xy}	$\mathbf{d}_{x^2-y^2}$
CASSCF	1.868	0.075	0.075
Unrestricted DFT	1.593	0.407	0^a

^{*a*}Because the wave function in U-DFT is a single determinant, natural orbitals appear in pairs for which a sum of the fractional occupation numbers equals 2 (e.g., 1.593+0.407).

Table S7: Free energy correction (kcal/mol) to the relative spin-state energetics of $[Mo(CN)_6]^{2-}$ based on harmonic frequencies; the singlet state comes from either spin-restricted (SR) or spin-unrestricted (SU) calculations.^{*a*}

	Δ	C	
$T(\mathbf{K})$		$\Delta G_{\rm S-T}$	
	\mathbf{SR}	SU	
0	0.4	0.0	
100	0.6	0.2	
200	0.9	0.4	
300	1.1	0.6	
400	1.6	1.1	
500	2.0	1.5	
600	2.5	1.9	
^{<i>a</i>} i.e., $\Delta G_{S-T} = G_S - G_T =$			
$\Delta E_{\mathrm{S-T}}^{ZPE} - RT \ln \left(Q_{\mathrm{S}}^{\mathrm{vib}} / Q_{\mathrm{T}}^{\mathrm{vib}} \right) +$			
$+RT\ln(3$	B).		

Table S8: Relative energies (kcal/mol) of spin-orbit free and spin-orbit coupled states for the experimental octahedral geometry of $[Mo(CN)_6]^{2-}$, computed using the multi-state CASSCF/CASPT2 + RASSI approach, ANO-I basis, $\varepsilon_{IPEA} = 0.25$ a.u.^{*a*}

Term	Spin-Orbit	Spin-Orbit
(O_h)	Free	Coupled
$^{3}T_{1q}$	0.0	-1.1
5	0.0	-1.1
	0.0	-1.1
		-1.1
		-1.1
		1.0
		1.0
		1.0
		1.9
${}^{1}T_{2g}$	14.5	14.6
	14.5	14.6
	14.5	14.6
${}^{1}E_{g}$	14.6	14.7
-	15.6	15.7
${}^{1}A_{2g}$	39.7	39.9

Table S9: Relative energies (kcal/mol) of spin-orbit free and spin-orbit coupled states for the DFT-optimized trigonal prismatic structure of the spin-restricted singlet state (D_{3h} symmetry), computed using the multi-state CASSCF/CASPT2 + RASSI approach, ANO-I basis, $\varepsilon_{\text{IPEA}} = 0.25$ a.u.

Term	Spin-Orbit	Spin-Orbit
(D_{3h})	Free	Coupled
$1^1 A'_1$	0.0	0.0
$^{3}E'$	2.4	1.3
	2.4	1.3
		2.3
		2.3
		3.4
		3.4
$1^1 E'$	16.5	16.6
	16.7	16.8
${}^{3}A'_{2}$	33.5	33.2
		33.5
		33.5
$2^1 E'$	41.9	41.9
	42.1	42.1
$2^1 A_1'$	53.6	53.8

Table S10: Relative energies (kcal/mol) of spin-orbit free and spin-orbit coupled states for the DFT-optimized trigonal prismatic structure of the lowest triplet state (C_{2v} Symmetry). computed using the multi-state CASSCF/CASPT2 + RASSI approach, ANO-I basis, $\varepsilon_{\text{IPEA}} = 0.25$ a.u.

Term	Spin-Orbit	Spin-Orbit
(C_{2v})	Free	Coupled
$1^{3}B_{2}$	0.0	-0.1
		-0.1
		0.0
$1^{1}A_{1}$	7.7	7.7
$1^{1}B_{2}$	16.3	16.0
$1^{3}A_{1}$	21.1	21.1
		21.1
		21.3
$2^{1}A_{1}$	33.4	33.3
$3^{1}A_{1}$	38.0	37.9
$2^{3}B_{2}$	41.7	41.7
$2^{1}B_{2}$	49.8	49.9
$4^{1}A_{1}$	81.2	81.3

Table S11: DFT:BP86-optimized atomic coordinates of $[Mo(CN)_6]^{2-}$, singlet state (spin-restricted) (Å).

Мо	0.0000000	0.0000000	0.0000000
С	1.6192174	0.0000000	1.3424304
С	-0.8096087	1.4022834	1.3424304
С	1.6192174	0.0000000	-1.3424304
С	-0.8096087	1.4022834	-1.3424304
С	-0.8096087	-1.4022834	-1.3424304
С	-0.8096087	-1.4022834	1.3424304
Ν	2.5270741	0.0000000	2.0909924
Ν	-1.2635371	2.1885104	2.0909924
Ν	2.5270741	0.0000000	-2.0909924
Ν	-1.2635371	2.1885104	-2.0909924
Ν	-1.2635371	-2.1885104	-2.0909924
Ν	-1.2635371	-2.1885104	2.0909924

Table S12: DFT:BP86-optimized atomic coordinates of $[Mo(CN)_6]^{2-}$, singlet state (spin-unrestricted) (Å).

Мо	0.0340194	-0.0025839	0.0000000
С	0.7280715	-1.4788114	-1.3637018
С	0.8011545	1.4370042	-1.3611966
С	-1.5925981	0.0453336	-1.3205991
С	-1.5925981	0.0453336	1.3205991
С	0.7280715	-1.4788114	1.3637018
С	0.8011545	1.4370042	1.3611966
Ν	1.1665545	-2.2729113	-2.1115231
Ν	1.2797257	2.2084054	-2.1082621
Ν	-2.5084462	0.0703310	-2.0585861
Ν	-2.5084462	0.0703310	2.0585861
Ν	1.1665545	-2.2729113	2.1115231
Ν	1.2797257	2.2084054	2.1082621

Table S13: DFT:BP86-optimized atomic coordinates of $[{\rm Mo}({\rm CN})_6]^{2-},$ triplet state (Å).

Мо	0.0000000	0.0000000	-0.0864483
С	-1.3803847	1.5290262	-0.7060181
С	-1.2888760	0.0000000	1.5609974
С	-1.3803847	-1.5290262	-0.7060181
С	1.3803847	-1.5290262	-0.7060181
С	1.3803847	1.5290262	-0.7060181
С	1.2888760	0.0000000	1.5609974
Ν	-2.1259354	2.3161485	-1.1581560
Ν	-2.0163980	0.0000000	2.4846407
Ν	-2.1259354	-2.3161485	-1.1581560
Ν	2.1259354	-2.3161485	-1.1581560
Ν	2.1259354	2.3161485	-1.1581560
Ν	2.0163980	0.0000000	2.4846407

Table S14: DFT:BP86-optimized atomic coordinates of $[Mo(CN)_6]^{3-}$, quartet state (Å).

Мо	0.0000000	0.0000000	0.0000000
С	0.0000000	2.2357100	0.0000000
С	0.0000000	0.0000000	2.2357054
С	-2.2357109	0.0000000	0.0000000
С	0.0000000	-2.2357100	0.0000000
С	0.0000000	0.0000000	-2.2357054
С	2.2357109	0.0000000	0.0000000
Ν	0.0000000	3.4009693	0.0000000
Ν	0.0000000	0.0000000	3.4009641
Ν	-3.4009701	0.0000000	0.0000000
Ν	0.0000000	-3.4009693	0.0000000
Ν	0.0000000	0.0000000	-3.4009641
Ν	3.4009701	0.0000000	0.0000000

Table S15: DFT:BP86-optimized atomic coordinates of $[Mo(CN)_6]^{3-}$, doublet state (Å).

Мо	0.0000000	0.0000000	0.0000000
С	0.0000000	2.1936533	0.0000000
С	0.0000000	0.0000000	2.1936544
С	-2.1968955	0.0000000	0.0000000
С	0.0000000	-2.1936533	0.0000000
С	0.0000000	0.0000000	-2.1936544
С	2.1968955	0.0000000	0.0000000
Ν	0.0000000	3.3737511	0.0000000
Ν	0.0000000	0.0000000	3.3737523
Ν	-3.3766268	0.0000000	0.0000000
Ν	0.0000000	-3.3737511	0.0000000
Ν	0.0000000	0.0000000	-3.3737523
Ν	3.3766268	0.0000000	0.0000000

Table S16: DFT:BP86-optimized atomic coordinates of $[MoCl_6]^{2-}$, triplet state (Å).

Мо	0.0000000	0.0000000	0.0000000
CI	0.0000000	0.0000000	2.4615332
CI	2.4084425	0.0000000	0.0000000
CI	0.0000000	-2.4084423	0.0000000
CI	0.0000000	0.0000000	-2.4615332
CI	-2.4084425	0.0000000	0.0000000
CI	0.0000000	2.4084423	0.0000000

Table S17: DFT:BP86-optimized atomic coordinates of $[{\rm MoCl}_6]^{\,2-},$ singlet state (spin-unrestricted) (Å).

Мо	0.0000000	0.0000000	0.0000000
CI	0.0000000	0.0000000	2.4555665
CI	2.4059523	0.0000000	0.0000000
CI	0.0000000	-2.4059525	0.0000000
CI	0.0000000	0.0000000	-2.4555665
CI	-2.4059523	0.0000000	0.0000000
CI	0.0000000	2.4059525	0.0000000

Table S18: Atomic coordinates (Å) of model shown in Figure S1.

Мо	12.590000	0.000000	0.000000
С	10.500060	0.000000	0.000000
Ν	9.363183	0.000000	0.000000
С	14.679940	0.000000	0.000000
Ν	15.816817	0.000000	0.000000
С	12.590000	-2.089940	0.000000
Ν	12.590000	-3.226817	0.000000
С	12.590000	2.089940	0.000000
Ν	12.590000	3.226817	0.000000
С	12.590000	-0.000000	-2.089940
Ν	12.590000	-0.000000	-3.226817
С	12.590000	0.000000	2.089940
Ν	12.590000	0.000000	3.226817
Мо	12.590000	6.295000	6.295000
С	10.500060	6.295000	6.295000
Ν	9.363183	6.295000	6.295000
С	14.679940	6.295000	6.295000
Ν	15.816817	6.295000	6.295000
С	12.590000	4.205060	6.295000
Ν	12.590000	3.068183	6.295000
С	12.590000	8.384940	6.295000
Ν	12.590000	9.521817	6.295000
С	12.590000	6.295000	4.205060
Ν	12.590000	6.295000	3.068183
С	12.590000	6.295000	8.384940
Ν	12.590000	6.295000	9.521817
0	12.590000	0.000000	6.295000
Н	12.590000	0.950446	6.415069
Н	12.590000	-0.121151	5.342675

Table S19: Z-matrix used to define twisted structures for the potential energy scan in Figure 2, main article. To obtain an initial structure with the twist angle θ , the parameter dih4 should be set to $-\theta$.

zmat	and	gstroms	3				
mo		-					
XX	1 :	xxmo2					
С	1	cmo3	2	2	cmoxx3		
С	1	cmo4	2	2	cmoxx4	3	dih4
С	1	cmo5	2	2	cmoxx5	3	dih5
С	1	cmo 6	2	2	cmoxx6	3	dih6
С	1	cmo7	2	2	cmoxx7	6	dih7
С	1	cmo8	2	2	cmoxx8	6	dih8
n	3	nc9	1		ncmo9	2	dih9
n	4	nc10	1		ncmo10	2	dih10
n	5	nc11	1		ncmo11	2	dih11
n	6	nc12	1		ncmo12	2	dih12
n	7	nc13	1	_	ncmo13	2	dih13
n	8	nc14	1	_	ncmo14	2	dih14
varia	able	∋s					
xxmo2	2	1.	206662				
cmo3		2.	089999				
CMOXX	ĸЗ	5	4.736				
cmo4		2.	089999				
CMOXX	ĸ4	5	4.736				
dih4		-12	20.000				
cmo5		2.	089999				
CMOXX	ĸ5	5	4.736				
dih5		12	20.000				
cmo6		2.	089999				
CMOXX	ĸ6	12	25.264				
dih6		-6	50.000				
cmo7		2.	089999				
CMOXX	ĸ7	12	25.264				
dih7		-12	20.000				
cmo8		2.	089999				
CMOXX	ĸ8	12	25.264				
dih8		12	20.000				
nc9		1.	137000				
ncmo	9	18	30.000				
dih9		18	80.000				
nc10		1.	137000				
ncmol	10	18	80.000				
dih1()	18	80.000				
ncll		1.	137000				
ncmol	L	18	30.000				
ainii	L	15	10.000				
ncl2		1.	13/000				
ncmol	12	10	0.000				
	2	15	127000				
nci3	12	1.0	13/000				
1101101	13 5	10					
uini:	C	10	127000				
nome1	1 /	10	13/000				
dib1/	⊥ '1 1	10					
dilli14		- C T C					
ond	aili	15					
ena							

angle(3-1-2) = angle(4-1-2) = angle(5-1-2) angle(6-1-2) = angle(7-1-2) = angle(8-1-2) dih(3-2-1-6) = dih(4-2-1-7) = dih(5-2-1-8) = $-\theta$

Figure S8: Definitions of geometric constraints applied to generate the potential energy scan along the Bailar twist coordinate θ (Figure 2, main article). Atom 1 is Mo, 2 is a dummy atom lying in the center of triangle 2-3-4, atoms 3–8 are carbons. In spin restricted calculations for the singlet state the following constraints were also applied: angle(3-2-4) = angle(4-2-5) = angle(3-2-5) and angle(6-2-7) = angle(7-2-8) = angle(6-2-8) in addition to the constraints given above; this was necessary to avoid a significant deformation of the structure for $\theta > 45^{\circ}$, whose occurrence would prevent an interpretation of the resulting structures as close to the octahedral one.

-	Calcd Octahedral	a		Calcd Prismatic ^t		Expt
S(R)	S(U)	L	S(R)	S(U)	T	
$IR: \\ 2022(e_u, 16\%) \\ 2104(a_{2u}, 100\%)$	$2062(a_{2u}, 19\%)$ $2071(e_u, 100\%)$	$\begin{array}{c} 2074(a_{2u}, \ 15\%)\\ 2080(e_{u}, 100\%) \end{array}$	$2072(e', 100\%)$ $2072(a''_2, 28\%)$	2073(a'', 2%) 2075(a', 72%) 2082(a', 100%) 2087(a'', 3%) 2099(a', 57%)	$2075(b_1, 2\%) \ 2080(a_1, 43\%) \ 2098(b_1, 100\%) \ 2108(a_1, 11\%)$	2088
Raman: 2035 $(b_{1g}, 92\%)$ 2057 $(a_{1g}, 100\%)$ 2110 $(a_{1g}, 72\%)$	$2072(a_{1g}, 85\%) \ 2078(b_{1g}, 59\%) \ 2087(a_{1g}, 100\%)$	$\begin{array}{c} 2083(a_{1g}, \ 84\%) \\ 2087(b_{1g}, \ 73\%) \\ 2094(a_{1g}, \ 100\%) \end{array}$	$2072(e', 18\%) \ 2079(e'', 48\%) \ 2104(a'_1, 100\%)$	2073(a'', 16%) 2075(a', 19%) 2082(a', 25%) 2087(a'', 26%) 2091(a'', 47%) 2099(a', 100%)	$\begin{array}{c} 2075(b_1, \ 19\%)\\ 2080(a_1, \ 24\%)\\ 2095(b_2, \ 20\%)\\ 2098(b_1, \ 16\%)\\ 2103(a_2, \ 48\%)\\ 2108(a_1, \ 100\%)\end{array}$	$2094(\sim 50\%)$ 2106 (100%)
^a Real symmetry is ref. 6. Abbreviatio level. Symmetry irr	not O_h , but D_{4h} due i ns: S - singlet, T - cep and relative inter	to uneven occupation triplet, $(R)/(U) - re$ usity with respect to 1	of the t_{2g} orbitals. ^t estricted/unrestricte the most intense con	Symmetry is D_{4h} fc d description. All munted transition in	$\begin{array}{l} \operatorname{rs} \mathrm{S}(\mathrm{R}), C_s \ \mathrm{for} \ \mathrm{S}(\mathrm{U}), \\ \mathrm{values} \ \mathrm{in} \ \mathrm{cm}^{-1} \ \mathrm{at} \ \mathrm{I} \end{array}$	C ₂ ^v for T. ^c From BP86/def2-TZVP

Table S20: Comparison of calculated and experimental $\nu_{\rm CN}$ bands active in IR and Raman spectroscopy.

Comments to Table S20.

The experimental IR and Raman data are taken from ref. 6. Theoretical data were computed for the octahedral and trigonal prismatic structures, assuming either triplet or singlet state (the latter can be treated using either restricted or unrestricted approach). Concerning the number of allowed bands for the octahedral structure, one should remember that the actual symmetry is D_{4h} due to uneven occupation of the t_{2g} orbitals. Therefore, the actual number of ν_{CN} bands active in IR / Raman is: 2 / 3 (and not 1 / 2, as might be inferred from the ideal O_h symmetry) Likewise, the prismatic structure has the D_{3h} symmetry only in spin-restricted calculations for the singlet state, but it has instead, the C_{2v} symmetry for the triplet or the C_s symmetry for the singlet in spin-unrestricted calculations. This symmetry lowering (to C_s) for the unrestricted singlet results is clearly an artifact of the unrestricted approach: the energy is improved (compared to closed-shell singlet), but the structure and thus frequencies not necessarily so. The singlet structure obtained from spinrestricted calculations also results in a lower CASPT2 energy, confirming that this more symmetric structure is closer to the CASPT2 energy miniumum, and presumably to the real structure of the singlet state.

IR spectrum

The fact that the experimental spectrum contains only one $\nu_{\rm CN}$ band is best reproduced by the results from (restricted) singlet-state calculations for the trigonal prism geometry. Although for D_{3h} symmetry there should be two IR-active modes (a''_2, e') , they accidentally overlap up to $< 1 \text{ cm}^{-1}$! For all other structures there are at least two IR-active $\nu_{\rm CN}$ modes separated by at least 5 cm⁻¹. However, given that the FWHM of the experimental $\nu_{\rm CN}$ band is $\sim 15 \text{ cm}^{-1}$, the results calculated for the triplet octahedral structure (two bands separated by only 6 cm⁻¹) may also be in an acceptable agreement with the experimental IR spectrum.

Raman spectrum

For none of the structures the computed results are in perfect agreement with the experimental spectrum (where two $\nu_{\rm CN}$ bands are observed). The best agreement seems to be obtained, again, for the octahedral structure in the triplet state and for the trigonal prism structure in the (restricted) singlet state. We note that all the results, including these two, predict a higher number of allowed $\nu_{\rm CN}$ bands than actually appear in the Raman spectrum but this can be probably explained by band overlapping. Particularly the results from (restricted) singlet calculations for the trigonal prism geometry give a reasonable distribution of the two more intense bands; the only problem is with the lowest, less intense band which is not observed although its computed relative intensity is 18% of the most intense band.

In conclusion, the results of the analysis for the present case are not conclusive due to band overlapping. They do not rule out, but neither fully confirm, the possibility of a trigonal prismatic geometry.

Figure S9: Temperature dependence of molar magnetic susceptibility of $\mathbf{1} \chi$ measured on the SQUID magnetometer. A trace of paramagnetism appears at very low temperatures (which is attributed to a contamination of the sample by ubiquitous iron at very low concentration); moreover, there is an unexpected increase of χ for higher temperatures (attributed to increasing a Boltzmann population of the higher-energy paramagnetic states). A function of form: $\chi_0 + C/T$ was fitted to the experimental data for T < 150K, yielding: $\chi_0 = -201.4 \cdot 10^{-6}$ emu/mol, $C = 25.42 \cdot 10^{-6}$ emu·K/mol.

Thermodynamical model to explain the temperature dependence of magnetic susceptibility for a system with close lying singlet and triplet states

Let us consider a two-level system, with a singlet ground state and an excited triplet state (at the energy $\Delta > 0$ above the singlet). When the system is placed in the external magnetic field *B* at finite temperature *T*, the canonical partition function reads:

$$Z = 1 + e^{-y} \sum_{m=-1}^{1} e^{xm},$$

with m = -1, 0, 1 – the magnetic quantum number in the triplet state; the dimensionless, positive quantities $x := g\beta/(kT)$, $y := \Delta/(kT)$; $g \approx 2$ – the electron's gyromagnetic ratio; β – the Bohr magneton; k – the Bohrzmann constant. The average value of the magnetic quantum number reads:

$$\langle m \rangle = Z^{-1} e^{-y} \sum_{m=-1}^{1} m e^{xm} = \frac{e^{-y} (e^x - e^{-x})}{1 + e^{-y} (e^x + e^{-x} + 1)} =: m(x, y),$$
 (S1)

from which the magnetization per mole can be calculated:

$$M = Ng\beta\langle m \rangle = N_A g\beta m(x, y),$$

where N is the Avogadro constant. The molar magnetic susceptibility reads:

$$\chi = \frac{\partial M}{\partial B} = Ng\beta \frac{\partial m}{\partial B} = Ng\beta \cdot \frac{\partial m}{\partial x} \cdot \frac{g\beta}{kT} = \frac{N(g\beta)^2}{kT} \cdot \frac{\partial m}{\partial x}.$$

In the regime of weak fields: $kT \gg g\beta B$, i.e., $x \ll 1$, the function in eq. (S1) reduces to

$$m(x,y) = \frac{2xe^{-y}}{1+3e^{-y}} = \frac{2x}{3+e^{y}}$$

and we have simply:

$$\chi = N \frac{(g\beta)^2}{kT} \cdot \frac{2}{3+e^y} = \frac{2(g\beta)^2}{3k} \cdot \frac{1}{T} \cdot \frac{1}{1+\frac{1}{3}e^y}.$$
 (S2)

So far we neglected the effect of spin-orbit coupling. This effect can be introduced approximately by invoking now that, due to the spin-orbit coupling, the effective magnetic moment of the triplet state differs from its spin-only value. Thus, effectively, the g factor in (S2) needs to be modified by introducing an *ad hoc* parameter a in the following way: $g = 2\sqrt{a}$; the unit value of a would correspond to the situation without the spin-orbit coupling. Having done this conjecture, the susceptibility reads

$$\chi = \frac{8N\beta^2}{3k} \cdot \frac{a}{T} \cdot \frac{1}{1 + \frac{1}{3}e^y}$$

Taking into account that in the CGS units the first factor is (approximately) $1 \text{ emu}\cdot\text{K/mol}$, we have the following final formula:

$$\chi(T) = \frac{a}{T} \cdot \frac{1}{1 + \frac{1}{3}e^{\frac{\Delta}{kT}}} =: f(T),$$
(S3)

which was used in the text as eq. (1).

It is worth to note that if Δ was equal to 0 (i.e., the singlet and the triplet were degenerate), the equation (S3) would reduce to 75% of the triplet susceptibility (a/T, in the CGS units). This is a correct limiting value because, if the singlet and triplet state were degenerated, 75% of the centers would be in the triplet and 25% in the singlet state, due to the statistics.