Supporting Information

of

Electrochemical Lithiation Performance and Characterization of

Silicon-Graphite Composites with Lithium, Sodium, Potassium,

and Ammonium Polyacrylate Binders

Zhen-Ji Han,¹ Kiyofumi Yamagiwa,¹ Naoaki Yabuuchi,¹ Jin-Young Son,² Yi-Tao Cui,² Hiroshi Oji,² Akinori Kogure,³, Takahiro Harada,⁴ Sumihisa Ishikawa,⁴ Yasuhito Aoki,⁴ and Shinichi Komaba^{1,*}

¹Department of Applied Chemistry Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan

²JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

³Shimadzu Techno-Research, INC, 380-1, Horiyamashita, Hadano-shi, Kanagawa 259-1304, Japan

⁴ Toray Research Center Inc., Japan

*corresponding author e-mail: komaba@rs.kagu.tus.ac.jp

Figure S1 Relation between capacity retention $((n^{th} \text{ dis. } Q / 2^{nd} \text{ dis. } Q) \times 100$ (%, dis. Q = discharge capacity)) and cycle number of the Si / graphite electrodes with 10 wt% (a) PVdF, (b) PAH, (c) PAH_{0.8}Na_{0.2}, (d) PAH_{0.4}Na_{0.6}, (e) PAH_{0.2}Na_{0.8} and (f) PANa binders.

Figure S2 Initial reduction / oxidation curves (at 50 mA g⁻¹ in a voltage range 2.0 - 0.0 V) of the Si / graphite electrodes prepared with 10 wt% PAH_{0.4}(NH₄)_{0.6}, PAH_{0.2}(NH₄)_{0.8} and PANH₄ binders.

Figure S3 Variation of viscosity of PAH solution neutralized by 1 mol dm^{-3} ammonia aqueous solution (NH₄OH aqueous solution) in the similar way to NaOH. Viscosity change of NaOH-PAH neutralization is shown for comparison.

Figure S4 Na 1s HAX-PES spectra of the composite electrode (left) before cycle test and (right) after 10 cycles for $PAH_{0.2}Na_{0.8}$ and PANa electrode.