SUPPLEMENTARY INFORMATION

Prediction of Enhanced Solvent-Induced Enantioselectivity in a Ring

Opening with a Bifurcating Reaction Path

Barry K. Carpenter,*^{*a*} Jeremy N. Harvey^{*b*} and David R. Glowacki^{*c*}

^a School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK; Tel: +44 2920875844; E-mail: carpenterb1@cardiff.ac.uk.
^b Department of Chemistry, KU Leuven, Celestijnen Laan 200F, B-3001 Heverlee; Tel: +32 16372 198; E-mail: jeremy.harvey@chem.kuleuven.be.
^c School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; E-mail:

david.r.glowacki@bristol.ac.uk.

CONTENTS

Supplementary MM3 parameters	pp. S1-S2
Solvent periodic boundary box dimensions and densities	p. S3
Empirical Valence Bond H_{12} function and offsets	p. S3
Geometries and M06-2X/ccpVTZ geometries of TFIPA H-bond complexes	pp. S3-S5
Residuals plot for fit of the EVB potential to M06-2X/cc-pVTZ direct-dynamics	
trajectory points.	p. S5

Supplementary MM3 parameters for meso-2,3-difluoro-2,3-dimethyldiazocyclopropane

parameters mm3 bondtype morse vdwtype mm3-hbond

atom	167	N	"	Diazo ter	minal	N "			7	14.003	1
atom	168	N	"	Diazo inn	ner N"				7	14.003	2
atom	169	С	"	Diazocycl	opropa	ne C"			6	12.000	3
atom	170	F	"	Solute F"	1				9	18.998	1
vdw	167			1.930	0	0.0430					
vdw	168			1.940	0	0.0440					
vdw	169			1.940	0	0.0560					
vdw	170			1.710	0	0.0450					
bond	170	22		4.758	31	1.3595					
bond	169	168		1.987	0	1.3052					
bond	167	168		20.394	3	1.1190					
bond3	22	169		3.123	6	1.5200					
angle	1	22	170	0.001	.0	120.00					
angle	1	22	22	0.010	0	116.80	11	4.20		0.00	
angle	170	22	22	1.102	20	112.00	11	6.30		0.00	
angle	170	22	169	0.623	32	112.00	11	6.30		0.00	
angle	167	168	169	0.192	2	178.00					
angle3	22	22	169	1.878	39	56.60					
angle3	22	169	22	0.009	9	60.00					
angle5	1	22	169	0.000)3	116.80	11	4.20		0.00	
angle5	22	169	168	0.331	4	122.00	11	7.00		0.00	
torsion	1	22	22	170	0.200	0.0 1	0.00	0 180.0	02	0.0134	0.0 3
torsion	1	22	169	22	0.000	0.0 1	0.00	0 180.0	02	0.2752	0.0 3
torsion	1	22	169	168	0.000	0.0 1	0.00	0 180.0	02	0.5401	0.0 3
torsion	5	1	22	170	-0.460	0.0 1	1.19	0 180.0	2	0.4394	0.0 3
torsion	5	1	22	169	0.000	0.0 1	0.00	0 180.0	02	0.3227	0.0 3

Electronic Supplementary Information (ESI) for Physical Chemistry Chemical Physics This journal is the Owner Societies 2014

torsion	170	22	22	170	0.000 0.0 1	0.000	180.0	2 0.2600	0.0 3
torsion	170	22	22	22	0.200 0.0 1	0.000	180.0	2 0.0100	0.0 3
torsion	170	22	22	169	0.200 0.0 1	0.000	180.0	2 0.2570	0.0 3
torsion	170	22	169	22	0.200 0.0 1	0.000	180.0	2 0.3122	0.0 3
torsion	170	22	169	168	0.000 0.0 1	0.000	180.0	2 0.0110	0.0 3
torsion	22	169	168	167	0.000 0.0 1	0.000	180.0	2 0.0066	0.0 3
torsion	169	22	22	1	0.000 0.0 1	0.000	180.0	2 0.1670	0.0 3
torsion5	1	22	22	169	0.000 0.0 1	0.000	180.0	2 0.1670	0.0 3
torsion5	22	22	169	168	0.000 0.0 1	0.000	180.0	2 0.0001	0.0 3
strbnd	1	22	169	0.0066	0.0066				
strbnd	22	169	22	0.9978	0.9978				
electneg	22	169	168		-0.0225				
electneg	1	22	170		-0.0225				
electneg	170	22	1		0.0100				
electneg	22	22	170		-0.0225				
dipole	170	22		2.2475	5 0.500				
dipole	168	169		-3.4284	1 0.500				
dipole	167	168		2.4223	3 0.500				
hbond	21	170		2.128	8.09				
hbond	21	11		2.111	3.95				

Supplementary MM3 parameters for 2,4-difluoropenta-2,3-diene + N_2

parameters mm3 bondtype morse vdwtype mm3-hbond

atom	165	С	"	Allene	termina	al C"			6		12.000	4	4
atom	166	С	"	Allene	central	C″			6		12.000	2	2
atom	170	F	"	Solute	F″				9		18.998		1
vdw	165			1.9	9600	0.05	60						
vdw	166			1.9	9400	0.05	60						
vdw	170			1.7	7100	0.04	50						
bond	1	165		4.9	9309	1.48	74						
bond	10	10		27.8	3918	1.08	67						
bond	170	165		1.1	1065	1.35	35						
bond3	165	166		3.5	5783	1.30	00						
bond3	165	165		0.	.0001	2.6	266						
angle	1	165	170	1.03	376	111.9	0	115.00)	0	0.00		
angle	5	1	165	0.58	371	109.5	0	109.3	1 :	110	.40		
angle	170	165	165	0.19	902	120.5	0	119.00)	0	.00		
angle	170	165	166	0.87	758	120.5	0	119.00)	0	.00		
angle3	165	166	165	0.01	142	180.0							
angle3	165	165	166	0.09	977	0.000	1						
angle5	1	165	165	0.00	024	127.5	0						
angle5	1	165	166	0.00	002	127.5	0						
torsion	1	165	165	1	0.000	0.0	1	5.9777	0.0	2	0.000	0.0	3
0.00 0.0	4												
torsion	1	165	165	170	0.000	0.0	1	0.1054	0.0	2	0.000	0.0	3
0.00 0.0	4												
torsion	1	165	165	166	0.000	0.0	1	0.0001	180.0	2	0.000	0.0	3
torsion	1	165	166	165	0.000	0.0	1	0.0001	180.0	2	0.000	0.0	3
torsion	5	1	165	170	0.000	0.0	1	0.000	180.0	2	0.540	0.0	3
torsion	5	1	165	165	0.000	0.0	1	0.0000	180.0	2	-0.090	0.0	3
torsion	5	1	165	166	0.000	0.0	1	0.0000	180.0	2	-0.090	0.0	3
torsion	170	165	165	170	0.000	0.0	1	23.2050	0.0	2	0.000	0.0	3
0.00 0.0	4												
torsion	170	165	165	166	0.000	0.0	1	0.0001	180.0	2	0.000	0.0	3
torsion	170	165	166	165	0.000	0.0	1	0.0000	180.0	2	0.000	0.0	3
torsion5	1	165	165	166	0.000	0.0	1	0.0001	180.0	2	0.000	0.0	3
electneg	1	165	170			-0.02	25						
electneg	170	165	1			0.01	00						
dipole	1	165		0.7	7500	0.5	00						
dipole	170	165		2.6	6500	0.5	00						
hbond	21	170		2.0	098	8.1	1						
hbond	21	11		2.1	111	3.9	5						

Electronic Supplementary Information (ESI) for Physical Chemistry Chemical Physics This journal is © the Owner Societies 2014

Solvent Box Dimensions

CHCl₃: Cubic box, 40.69 Å on a side, 508 solvent molecules, density 1.4801 g/cc.

CHFClBr: Cubic box, 41.53 Å on a side, 508 solvent molecules, density 1.7210 g/cc.

TFIPA: Cubic box, 33.76 Å on a side, 255 solvent molecules, density 1.2608 g/cc.

Empirical Valence Bond H12 Function

The best-fit parameters for the EVB off-diagonal coupling term were: $H_{12}=26.442e^{-17.007(r-1.745)^2}$ where r is the length of the breaking C–C bond.

The offsets for the diagonal terms were: $\varepsilon_1 = 42.0316$, $\varepsilon_2 = -3.5452$

OH ••• F Hydrogen-Bonded Complexes

The geometries and strengths of the OH ••• F hydrogen bonds included in the supplementary parameter set for TFIPA came from M06-2X/cc-pVTZ calculations. The optimized geometries of the complexes are reported below:

TFIF	PA•••	TF	IPA	
0	1	61	757	7

111			
0	1.617577	1.503056	-0.944049
С	2.507550	0.960357	-0.005905
С	2.513705	-0.554139	-0.140249
С	2.191673	1.373653	1.419576
F	2.813255	-0.945576	-1.377530
F	1.311085	-1.071427	0.159709
F	3.406204	-1.116543	0.686027
Η	0.715348	1.361977	-0.637352
Η	3.505923	1.292677	-0.293584
Η	1.206804	1.004198	1.708231
Η	2.189509	2.459742	1.478134
Η	2.928533	0.980524	2.117415
0	-3.673501	0.892139	-0.891827
С	-3.297491	0.157971	0.243201
С	-1.782998	0.029870	0.266632
С	-3.952223	-1.208956	0.315957
F	-1.183693	1.235034	0.275287
F	-1.335017	-0.612060	-0.818976
F	-1.351737	-0.626668	1.344616
Η	-3.512891	0.356577	-1.675734
Η	-3.568673	0.764616	1.107757
Η	-3.643796	-1.822183	-0.531963
Н	-5.031949	-1.083741	0.284162
Н	-3.680314	-1.727636	1.233098

E= -984.240075752 hartree

TFIPA•••Reactant

С	1.814672	0.087890	0.494204
С	2.030324	-0.772097	-0.716678
С	3.090939	0.185462	-0.283644
С	1.761858	-0.403775	1.903905
С	2.221225	-2.253845	-0.712913
F	0.900474	1.085511	0.274482
F	1.247750	-0.378468	-1.783777
Н	2.837889	-2.548674	0.132235
Η	2.720367	-2.561755	-1.631028
Н	1.248873	-2.739392	-0.642044
Η	2.514246	-1.172115	2.062513
Η	0.771111	-0.808819	2.103208
Н	1.958576	0.422481	2.585997
Ν	3.388745	1.246857	-0.980411
Ν	3.720494	2.144111	-1.550953
0	-0.838933	-1.263771	-0.069624
С	-2.186123	-1.087964	0.285656
С	-2.362446	0.277962	0.929642
С	-3.129374	-1.258167	-0.891557

Electronic Supplementary Information (ESI) for Physical Chemistry Chemical Physics This journal is the Owner Societies 2014

F		-3.628394	0.467462	1.324109
F		-2.056962	1.256236	0.068177
F		-1.583423	0.429555	2.002397
Н		-0.596927	-0.622256	-0.751258
Η		-2.401251	-1.823190	1.061819
Η		-2.968552	-2.239574	-1.331547
Н		-2.929986	-0.498547	-1.648102
Η		-4.168523	-1.173347	-0.579551
Е	=	-995.3431758	30 hartree	

TFIPA ••• Product

С	1.441674	1.505975	-0.083916
С	2.071369	0.374175	-0.022823
С	2.606997	-0.812238	0.003794
С	1.440084	2.539753	-1.147858
С	2.009461	-2.082385	-0.481675
F	3.835767	-0.985650	0.526589
F	0.623641	1.855157	0.957772
Н	2.091921	2.239995	-1.962667
Н	1.781605	3.491840	-0.740372
Н	0.424834	2.673019	-1.522970
Н	1.023395	-1.903754	-0.898485
Н	1.920153	-2.777232	0.354092
Н	2.663114	-2.529988	-1.231287
0	-0.556680	-0.922870	1.277516
С	-1.889007	-0.638382	0.944400
С	-1.992098	-0.399070	-0.553686
С	-2.456976	0.534603	1.721447
F	-1.519260	-1.432717	-1.255621
F	-1.294933	0.684672	-0.932061
F	-3.261707	-0.207132	-0.930966
Н	-0.059851	-0.096202	1.315331
Н	-2.463003	-1.546078	1.138678
Н	-1.888679	1.438953	1.501991
Н	-2.378681	0.321992	2.785310
Н	-3.501958	0.706857	1.470739

E= -885.887361053 hartree

TFIPA

0	-1.310847	-1.349609	-0.068945
С	-0.817041	-0.099842	-0.477145
С	0.627198	0.037103	-0.022126
С	-1.658482	1.059086	0.024806
F	1.401580	-0.923787	-0.521095
F	0.712980	-0.035781	1.317101
F	1.148571	1.211963	-0.393851
Η	-1.379650	-1.354762	0.891299
Η	-0.794176	-0.118954	-1.567100
Η	-1.646447	1.090727	1.115302
Η	-2.683906	0.919928	-0.309325
Н	-1.287271	2.010296	-0.351227

E= -492.116889226 hartree

Reactant

С	-0.273420	-0.405459	0.750446
С	-0.273420	-0.405459	-0.750446
С	0.948869	0.028695	-0.000000
С	-0.273420	-1.625396	1.616496
С	-0.273420	-1.625396	-1.616496
F	-1.044592	0.586169	1.291240
F	-1.044592	0.586169	-1.291240
Н	0.343132	-2.403843	-1.175341

Electronic Supplementary Information (ESI) for Physical Chemistry Chemical Physics This journal is © the Owner Societies 2014

Н	0.132493	-1.375922	-2.596018
Н	-1.291603	-1.993771	-1.738714
Н	0.343132	-2.403843	1.175341
Н	-1.291603	-1.993771	1.738714
Н	0.132493	-1.375922	2.596018
N	1.322686	1.279669	0.000000
N	1.720669	2.319492	0.000000

E= -503.213386495 hartree

_			
С	0.00000	0.00000	0.062869
С	0.00000	1.299642	0.031021
С	-0.000000	-1.299642	0.031021
С	-0.835144	2.195301	-0.812921
С	0.835144	-2.195301	-0.812921
F	0.826519	1.997653	0.839530
F	-0.826519	-1.997653	0.839530
Н	-1.488006	1.612996	-1.455699
Н	1.488006	-1.612996	-1.455699
Н	-0.191983	2.830545	-1.422894
Н	0.191983	-2.830545	-1.422894
Η	-1.436834	2.842943	-0.174386
Н	1.436834	-2.842943	-0.174386

E= -393.757552161 hartree

M06-2X/cc-pVTZ calculations were performed with GAMESS-US, Version 11-August, 2011, R1 (M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, *J. Comput. Chem.* 1993, **14**, 1347-1363.)

Residuals plot for fit of the EVB potential to M06-2X/cc-pVTZ direct-dynamics trajectory points.

