Supplementary information

Electron capture dissociation and drift tube ion mobility-mass spectrometry coupled with site directed mutations provide insights into the conformational diversity of a metamorphic protein

Sophie R. Harvey¹, Massimiliano Porrini², Robert C. Tyler³, Cait E. MacPhee⁴, Brian F. Volkman³ and Perdita E. Barran⁵.

1 School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.

2 Institut Européen de Chimie et Biologie (IECB), CNRS UMR 5248 Chimie et Biologie des Membranes et des Nano-objets (CBMN), 33607 Pessac Cedex, France

3 Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.

4 School of Physics and Astronomy, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.

5 School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK.

Corresponding Author

*Perdita E. Barran (perdita.barran@manchester.ac.uk)

Experimental Details

DT IM-MS

All analyses were performed using 100 μ M protein prepared in 20 mM ammonium acetate, pH 6.8. Three different day repeats were performed and the CCS obtained averaged. Similar tuning conditions were employed for each sample; capillary voltage 1.6 kV, cone voltage 56 - 60V, source temperature 80 °C and pusher period 90-130 μ s. The temperature and pressure of helium in the drift cell were approximately 28 °C and 4.0 Torr respectively. Measurements were made at eight different drift voltages from 60 to 15 V.

Theoretical CCS

Before deriving the CCS values, all three NMR structures (PDB identifiers 1J9O, 2JP1 and 2HDM for Ltn10, Ltn40 and monomeric CC3 mutant, respectively) plus Ltn10 1-72 (PDB 1J9O with ID tail removed), were minimised *in vacuo* using the sander engine of either Amber11 or 12 (Ltn1-72)¹ and implementing Amber99SB-ILDN². In the minimisation process first 5000 steps of steepest descend algorithm and then as many steps of conjugated gradients as sufficient to obtain a gradient convergence criterion (drms) equal to 0.005 kcal/mol•Å were excuted. For non-bonded interactions an infinite radial cut-off (999 Å) was used.

S1. WT 1-72

Species	Experimental	
	CCS / Ų	
$[M_{1-72}+4H]^{4+}$	$856\ \pm 4$	
[M ₁₋₇₂ +5H] ⁵⁺	916 ± 8	
[M ₁₋₇₂ +6H] ⁶⁺	950 ± 9	
[M ₁₋₇₂ +7H] ⁷⁺ *	1037	
[M ₁₋₇₂ +7H] ⁷⁺	1229 ± 12	
$[M_{1-72}+8H]^{8+}$	1416 ± 8	

DT 1M-MS- experimentally determined CCS.

Table S1: The average experimental CCS for all observed species of monomeric WT 1-72, errors are calculated from three different day repeats. * represents species observed in all repeats but only resolvable in one.

Figure S1: Mass spectra obtained on a 12T Apex Qe FTICR for WT 1-72 Ltn. Acquired using nano-electrospray ionisation of 5 μ M Ltn in 100 mM ammonium acetate

Figure S2: Mass spectra obtained on a 12T Apex Qe FT-ICR for WT1-72 Ltn after ECD fragmentation zoomed in to show low level fragmentation for A) $[M_{WT1-72}+5H]^{5+}$ and B) $[M_{WT1-72}+8H]^{8+}$. Inserts in both cases show full range spectra, high intensity species are due to charge reduction with no fragmentation

Figure S3: Mass spectra obtained on the DT IM-MS instrument for 100 μM WT 1-72 in 20 mM ammonium acetate

DT 1	M-N	IS- ex	perimen	tally	determined	CCS.
------	-----	--------	---------	-------	------------	------

Species	Experimental CCS / Å ²
[M _{CC3} +5H] ⁵⁺	1012 ± 2
[M _{CC3} +6H] ⁶⁺	1014 ± 3
$[M_{CC3}+7H]^{7+}$	1163 ± 4
$[M_{CC3}+8H]^{8+}$	1243 ± 5

Table S2: The average experimental CCS for all observed species of monomeric CC3, errors are calculated from the standard deviation of three different day repeats.

ECD Fragmentation buffered CC3- MS spectra obtained on FT ICR MS instrumentation

Figure S4: Mass spectra obtained on a 12T Apex Qe FTICR for CC3. Acquired using nanoelectrospray ionisation of 30 μ M CC3 in 100 mM ammonium acetate

Figure S5: Mass spectra obtained on a 12T Apex Qe FT-ICR for CC3 Ltn after ECD fragmentation zoomed in to show low level fragmentation for A) $[M_{CC3}+5H]^{5+}$ and B) $[M_{CC3}+7H]^{7+}$. Inserts in both cases show full range spectra, high intensity species are due to charge reduction with no fragmentation

Super charged CC3

Figure S6: Mass spectra obtained on the DT IM-MS instrument for 100 μ M WT 1-72 in 20 mM ammonium acetate + 1 % *m*-NBA

Species	Experimental
	CCS / Å ²

DT 1M-MS- experimentally determined CCS of supercharged CC3.

[M_{CC3}+5H]⁵⁺

 $[M_{CC3}+6H]^{6+}$ $[M_{CC3}+7H]^{7+}$

 $[M_{CC3}+8H]^{8+}$

 $[M_{CC3}+9H]^{9+}$

	$[M_{CC3}+10H]^{10+}$	1622 ± 17	
	$[M_{CC3} + 11H]^{11+}$	1697 ± 1	
	$[M_{CC3}+12H]^{12+}$	1757 ± 28	
	$[M_{CC3}+13H]^{13+}$	1824 ± 6	
Table S3: The average	age experimental CCS for	all observed species of monomeric CC3	
obtained under supe	ercharged conditions with	1% <i>m</i> -NBA, errors are calculated from t	h
	0.1 1:00 1		

 1023 ± 8

 $\begin{array}{c} 1046\pm15\\ 1252\pm30 \end{array}$

 1439 ± 25

 1498 ± 10

obtained under supercharged conditions with 1% *m*-NBA, errors are calculated from the standard deviations of three different day repeats. * represents species observed in all repeats but only resolvable in one.

Figure S7: Mass spectra obtained on a 12T Apex Qe FTICR for CC3. Acquired using nanoelectrospray ionisation of 30 μ M CC3 in 100 mM ammonium acetate + 1% *m*-NBA.

Figure S8: Mass spectra obtained on a 12T Apex Qe FT-ICR for supercharged CC3 Ltn after ECD fragmentation zoomed in to show low level fragmentation for A) $[M_{CC3}+8H]^{5+}$ and B) $[M_{CC3}+11H]^{11+}$. Inserts in both cases show full range spectra, with high intensity species are due to charge reduction with no fragmentation

Figure S9: Mass spectra obtained on a waters Q-TOF ultima for 50 μ M W55D A) effect of increasing buffer strength B) effect of changing pH in 20 mM ammonium acetate, through addition of formic acid or ammonium.

Species	Experimental
-	CCS / Å ²
$[M_{W55D} + 4H]^{4+}$	778 ± 8
$[M_{W55D} + 5H]^{5+}$	839 ± 7
$[M_{W55D} + 6H]^{6+}$	1057 ± 12
$[M_{W55D} + 7H]^{7+}$	1150 ± 26
$[M_{W55D} + 8H]^{8+}$	1401 ± 6
$[M_{W55D} + 9H]^{9+}$	1407 ± 9
$[D_{W55D} + 8H]^{8+}$	1509 ± 6
$[D_{W55D} + 9H]^{9+}$	1641 ± 8
$[D_{W55D} + 9H]^{9+} *$	1674
$[D_{W55D} + 10H]^{10+}$	1704 ± 6
$[D_{W55D} + 11H]^{11+}$	1829 ± 19
$[D_{W55D} + 11H]^{11+*}$	2020
$[D_{W55D} + 12H]^{12+}$	2062 ± 8
$[D_{W55D} + 13H]^{13+}$	2103 ± 67
$[D_{W55D} + 13H]^{13+}$	2237 ± 97
$[D_{W55D} + 14H]^{14+}$	2246 ± 5
$[D_{W55D} + 15H]^{15+*}$	2469
$[D_{W55D} + 16H]^{16+}$	2519 ± 12

Table S4: The average experimental CCS for all observed species of monomeric and dimeric W55D, errors are calculated from the standard deviations of three different day repeats. * represents species observed in all repeats but only resolvable in one

ECD Fragmentation of W55D- MS spectra obtained on FT ICR MS instrumentation

Figure S10: Mass spectra obtained on a 12T Apex Qe FTICR for W55D. Acquired using nano-electrospray ionisation of 30 μ M W55D in 100 mM ammonium acetate.

Figure S11: Mass spectra obtained on a 12T Apex Qe FT-ICR for monomeric W55D Ltn after ECD fragmentation of zoomed in to show low level fragmentation for A) $[M_{W55D}+6H]^{6+}$ and B) $[M_{W55D}+10H]^{10+}$. Inserts in both cases show full range spectra, high intensity species are due to charge reduction with no fragmentation

Figure S12: Mass spectra obtained on a 12T Apex Qe FT-ICR for dimeric W55D Ltn after ECD fragmentation zoomed in to show low level fragmentation for A) $[D_{W55D}+9H]^{9+}$ and B) $[D_{W55D}+13H]^{13+}$. Inserts in both cases show full range spectra, high intensity species are due to charge reduction with no fragmentation

References

(1) D.A. Case, T. A. D., T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. Duke, R.; Luo, R. C. W., W. Zhang, K.M. Merz, B. Roberts, B. Wang, S. Hayik, A. Roitberg,; G. Seabra, I. K., K.F. Wong, F. Paesani, J. Vanicek, J. Liu, X. Wu, S.R. Brozell,; T. Steinbrecher, H. G., Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D.R. Roe, D.H.; Mathews, M. G. S., C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and; Kollman, P. A. *AMBER 11*; University of California: San Francisco, 2010

(2) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. *Proteins: Structure, Function, and Bioinformatics* **2010**, *78*, 1950.