Exploring the possibilities of two dimensional transition metal carbides as anode material for sodium batteries

Eunjeong Yang^a, Hyunjun Ji^a, Jaehoon Kim^a, Heejin Kim^{a,b} and Yousung Jung^{*,a}

^a Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Yuseong Gu, Daejeon, Republic of Korea.
^b Suncheon Center, Korea Basic Science Institute, Suncheon 540-742, Republic of Korea.

Table S1. Computed total energy differences of O termination types relative to the most stable configuration (bold typeface) in eV. For M = Ti and Ni, the hcp-type O termination relaxed to the fcc-type structure after geometry optimization. 1×1 unit cell was used for the calculations.

M in M ₂ CO ₂	fcc-type	hcp-type	Mixed-type	
Ti	0.000	-	0.757	
V	0.000	0.608	0.260	
Cr	0.193	0.000	0.128	
Mn	0.000	0.336	0.430	
Fe	0.000	0.284	0.199	
Со	0.000	0.829	0.468	
Ni	0.000	-	0.480	
Nb	0.000	0.503	0.158	
Мо	1.087	0.000	0.677	

		М	C	0	Li or Na
Ti	Bare	1.56	-1.18	-0.97	
	Lithiated	1.25	-1.21	-0.83	0.18
	Sodiated	1.36	-1.20	-1.05	0.30
V	Bare	1.45	-1.12	-0.90	
	Lithiated	1.19	-1.13	-0.80	0.18
	Sodiated	1.27	-1.12	-1.02	0.32
Cr	Bare	1.24	-0.97	-0.76	
	Lithiated	1.10	-1.01	-0.75	0.16
	Sodiated	1.16	-0.98	-0.95	0.28
Mn	Bare	1.30	-0.92	-0.84	
	Lithiated	0.96	-0.86	-1.18	0.65
	Sodiated	1.63	-1.64	-1.71	0.90
Fe	Bare	1.10	-0.73	-0.73	
	Lithiated	0.74	-0.59	-1.14	0.70
	Sodiated	1.38	-1.34	-1.63	0.92
Со	Bare	0.89	-0.53	-0.62	
	Lithiated	0.53	-0.35	-1.07	0.72
	Sodiated	1.13	-1.02	-1.54	0.92
Ni	Bare	0.70	-0.27	-0.57	
	Lithiated	0.50	-0.27	-1.04	0.68
	Sodiated	1.02	-0.84	-1.53	0.93
Nb	Bare	2.21	-1.81	-1.30	
	Lithiated	1.78	-1.86	-1.03	0.19
	Sodiated	1.78	-1.86	-1.04	0.19
Мо	Bare	1.82	-1.52	-1.06	
	Lithiated	1.57	-1.58	-0.94	0.17
	Sodiated	1.68	-1.54	-1.18	0.27

Table S2. Average Bader charges based on the electronic charge density of bare (M_2CO_2) , lithiated $(M_2CO_2Li_2)$, and sodiated $(M_2CO_2Na_2)$ MXene sheets.

Figure S1. Considered ion migration pathways and corresponding energy profiles of Li and Na on (a) V_2CO_2 , (b) Mn_2CO_2 , and (c) Mo_2CO_2 .