Supporting Information

Phosphine and Phosphine Oxide Groups in Metal-Organic Frameworks detected by P K-edge XAS

Flavien L. Morel,^a Sonia Pin,^{b§} Thomas Huthwelker,^b Marco Ranocchiari,^b Jeroen A. van Bokhoven^{*ab}

^a Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland. E-mail: j.a.vanbokhoven@chem.ethz.ch; Tel: +41 44 632 5542

^b Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland. E-mail: marco.ranocchiari@psi.ch; Tel: +41 56 310 5843

§ Present address: Brembo S.p.a., Advanced R&D, Viale Europa 2, 24041 Stezzano (BG), Italy

Table of Content

1.	Infrared spectroscopy	. 3
2.	Summary of nitrogen physisorption experiments	. 4
3.	Additional characterization of LSK-12	. 4
4.	References	. 5

1. Infrared spectroscopy

Infrared spectra were recorded in the range of 4000-400 cm⁻¹ on a PerkinElmer 2000 FTIR spectrometer.

1.1. PPh₂-bdc and POPh₂-bdc

Figure S1. Infrared spectroscopy of PPh₂-bdc (red) and POPh₂-bdc (black). Full spectrum (left) and region of interest (right).

1.2. LSK-12 and LSK-15

Figure S2. Infrared spectroscopy of SLK-15 (red) and LSK-12 (black). Full spectrum (left) and region of interest (right).

2. Summary of nitrogen physisorption experiments

Table S1. Nitrogen physisorption properties of LSK-12, LSK-15 and related materials.^{1,2}

Materials	$S_{BET} (m^2/g)$	V _{pore} (cm ³ /g)
LSK-12	3020	2.04
LSK-15	2692	1.32
MIL-101(Cr)	4100	1.90
MIL-101(Al)-NH ₂	3099	1.53

3. Additional characterization of LSK-12

3.1. Powder X-ray diffraction pattern of LSK-12

Figure S3. Powder X-ray diffraction pattern of LSK-12.

3.2. Liquid chromatography after digestion

LSK-12 (1 mg) was dissolved in a NaOH solution (400 μ L 1 M) at 80 °C. Ethanol (400 μ L) and phosphoric acid (60 μ L, 85 % w/w) were added to the mixture, which was then filtered and analyzed in a Waters Acquity UPLC H-Class system equipped with a photodiodes array detector and a Waters BEH C18 (1.7 μ m, 1.0 ×150 mm) column. The relative ratio bdc : POPh₂-bdc : PPh₂-bdc was equal to 20 : 1 : 0.

4. References

(1) Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface. *Science* **309**, 2040–2042 (2005).

2) Hartmann, M.; Fischer, M. Amino-functionalized basic catalysts with MIL-101 structure. *Microporous Mesoporous Mater.* **164**, 38–43 (2012).