Electronic Supplementary Information

Kinetically Stabilized Aliovalent Europium-Doped Magnesium Oxideas UV Sensitized Phosphor

Chandresh Kumar Rastogi^a, SulaySaha^b,Sri Sivakumar^{a,b,c*},Raj Ganesh S Pala^{b*} and Jitendra Kumar^{a*}

^aMaterials Science Programme, Indian Institute of Technology Kanpur, 208016, Kanpur, India

^bDepartment of Chemical Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, India

^cCentre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, India

Fax: 91-512-2590104; Tel: 91-512-2596143; E-mail: srisiva@iitk.ac.in, rpala@iitk.ac.in, jk@iitk.ac.in

Materials Characterization

Thermogravimetry (TG) analysis of the sol–gel product was undertaken to ascertain calcination condition of oxide formation. An X-ray diffractometer (X' Pert PRO), an UV-Vis-NIR spectrophotometer (Varian model Carry 5000), a transmission electron microscope (FEI Technai G2), high resolution transmission electron microscope (Ultra High Resolution FEG TEM JEOL-JEM 2010) and an X-ray fluorescence spectrometer (Rigaku ZSX Primus series) were used for evaluation of phase(s), optical absorption measurements, microstructure, and composition analysis, respectively. A Fourier transform infrared (FTIR) spectrometer (BRUKER vertex-70) was utilized to identify various stretching bonds present in samples. Further, a fluorescence spectrophotometer (Edinburgh instruments FLSP 920), equipped with double monochromator, 450 W Xenon lamp as excitation source, and Peltier element cooled Hamamatsu R928-P PMT detector, was employed for obtaining the luminescence spectra. The luminescence lifetime was estimated by recording the decay curve using a 100W micro flash lamp (μ F920H) as the excitation source.

Thermogravimetric Analysis

In order to find out the calcination temperature, thermogravimetry (TG) analysis of dried sol–gel product (magnesium oxalate dihydrate) has been carried out by heating in air at the rate of 4 °C/min and monitoring the change in weight as a function of temperature. The weight vs.

temperature plot indicates two stages of weight loss (Fig. 1 of ESI). In the first stage, weight loss of 28.7% occurs over a range of 172–270 °C due to removal of crystalline water present in magnesium oxalate dihydrate. In the second stage, weight loss of 43.4% observed in the range 375–495 °C corresponds to thermal decomposition of anhydrous magnesium oxalate to magnesium oxide. As no weight loss was observed beyond 495 °C, MgO was prepared by decomposition of magnesium oxalate dihydrate at ~500 °C. The calcination temperature for the samples Mg_{1-x}Eu_xO:(x/2)V"_{Mg}(x=0-0.10) was chosen as500 °C.

Computational Methods

Density functional theory (DFT) calculations have been performed to obtain trends in stabilityMg_{1-x}Eu_xO:(x/2)V"_{Mg}, MgO and europium oxides. The calculations were performed with and without vacancy in Mg_{1-x}Eu_xO:(x/2)V"_{Mg}. The calculations have been performed withplane-wave basis set (energy cut-off of 400eV) and projector-augmented method¹ using Perdew, Burke and Ernzerhof (PBE)exchange-correlation functional² as implemented in *Vienna Ab initio Simulation Package* (VASP) software.^{3, 4} The pseudo-potential of Mg, O and Eu contain 2, 6 and 17 valence electrons. The Brillouin zone is sampled using a gamma centered mesh of k-points (8×8×8) for single cell calculation of oxides of europium and magnesium. For rest of the super cells calculations involving point defects, a gamma centered mesh of k-points are used which are adjusted according to the supercell length. The geometry has been relaxed by optimizing all structural parameters until the forces on each ion are smaller than 0.01 eV/Å. To correlate the ionic state of dopant, atomic charges have been estimated by the Bader decomposition scheme.⁵

After relaxation, the bulk lattice constant of MgO and Eu_2O_3 are found to be 4.24 Å and 11.08 Å respectively as against 4.21 Å(JCPDS PDF No. 04-0829)and 10.86 Å(JCPDS PDF No. 34-0392) reported in the literature.

The explicit reactions describing the solid state formation for the different europium concentration used in the present study are:

$$\left(1 - \frac{3x}{2}\right)MgO + \frac{x}{2}Eu_2O_3 = Mg_{1-x}Eu_xO:\frac{x}{2}V''_{Mg}$$
(1)

$$(1-x)MgO + \frac{x}{2}Eu_2O_3 = Mg_{1-x}Eu_xO + \frac{x}{4}O_2$$
(2)

We have carried out the stability analysis with respect to Eu_2O_3 rather than EuO as in the present study experimentally we have found that phase segregation occurs through Eu_2O_3 . Equation 1 corresponds to trivalent europiumdopingin MgO with creation of cationic vacancy whereas Equation 2 corresponds to doping of divalent europium without any vacancy formation (assuming the decomposed doped oxides forms Eu_2O_3).In order to determine the relative stability of the divalent Eu-doped with trivalent Eu-doped MgO structures, where the introduction of an increasing number of cation vacancies corresponds to an increase of the oxidation state.The heat of formation, ΔE^f corresponding to the different doping concentration for above four cases is evaluated using following equations:

$$\Delta E \int_{Mg_{1-x}Eu_{x}O:\frac{x}{2}V_{Mg}}^{f} = E \int_{Mg_{1-x}Eu_{x}O:\frac{x}{2}V_{Mg}}^{f} - (1 - \frac{3x}{2})E_{Mg0} - \frac{x}{2}E_{Eu_{2}O_{3}}$$
(3)

$$\Delta E_{Mg_{1-x}Eu_{x}0} = E_{Mg_{1-x}Eu_{x}0} - (1-x)E_{Mg0} + \frac{x}{4}E_{0_{2}} - \frac{x}{2}E_{Eu_{2}0_{3}}$$
(4)

Where $Mg_{1-x}Eu_xO:(x/2)V''_{Mg}$ and $E_{Mg_1-x}Eu_x^O$ are the energies of the systems with cationic vacancy and without cationic vacancy, respectively.

Table S1. Elemental composition obtained from energy dispersive x-ray analysis of Mg_{1-x}Eu_xO:(x/2)V''_{Mg}(x=0.005) samples

Element	Weight%	Atomic%		
ок	49.95	62.51		
MgK	25.43	20.94		
SiK	22.90	16.32		
Eu L	1.72	0.23		
Totals	100.00			

Table S2. Component of lifetime after double exponential fitting for Mg₁. Eu_xO:(x/2)V''_{Mg}(x=0.005 and 0.01) samples

Sl. No.	Composition (x)	τ ₁ (μs)	$\tau_2(\mu s)$	A ₁ (%)	A ₂ (%)	χ^2
1	0.005	586	2174	51.67	48.33	1.52
2	0.01	519	2105	74.22	25.78	1.56

S.No.	Host for Eu ³⁺ matrix	Effective lifetime (ms)	Phonon energy (cm ⁻¹)	Reference
1	Y ₂ O ₃	2.06	600 ⁷	Myint <i>et al.</i> , ⁶ Vetrone <i>et al.</i> ⁷
2	Gd_2O_3	1.75 ⁸	600 ⁹	Debasu <i>et</i> al., ⁸ Guo et al. ⁹
3	ZnO	1.25 ¹⁰	57411	Liu <i>et</i> <i>a.l</i> , ¹⁰ Fonoberov <i>et</i> <i>al</i> . ¹¹
4	Lu ₂ O ₃	1.33 ¹²	600	Yang <i>et</i> <i>al.</i> , ¹² Vetrone <i>et</i> <i>al.</i> ⁷
5	MgO	0.21613	750	Penget al. ¹³
6	MgO	1.80	750	MgO matrix in the present work

Table S3: Comparison of phonon energy of oxide matrices and effective lifetime of Eu³⁺ ions

S. No.	Composition	Lifetime	Quantum yield (%)		
	(x)	(ms)			
1	0.1	0.72	24.8		
2	0.5	1.81	62.4		
3	1	0.9	31.0		
4	5	0.8	27.6		
5	10	0.41	14.1		

Table S4: Estimated luminescence lifetime of 5D level and quantum yield for Mg1. ${}_xEu_xO:(x/2)V''_{Mg}(x)$ samples

Composition (x)	Heat of formation (with	Heat of formation(without
	vacancy)(eV)	vacancy)(eV)
0.0625	3.7	7.8
0.0417	3.6	7.7
0.0312	3.5	7.5
0.0156	3.2	7.4

Table	S5.	Heat of)f f	formation	for	Mg_{1}	Eu	O:($(\mathbf{x}/2)$)V"	Masystems
	~						A A	~ • •			112~ /~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fig.S1 TGA plot of dried magnesium oxalate dihydrate (MgC₂O₄.2H₂O) powder

Fig.S2 X-ray diffraction patterns of (a) $Mg_{1-x}Eu_xO:(x/2)V''_{Mg}(x=0.005)$ sample (b) Physically mixed MgO and Eu_2O_3 corresponding to x=0.005

Fig.S3 Digital photograph showing the dispersion of $Mg_{1-x}Eu_xO:(x/2)V''_{Mg}(x=0.005)$ particles in ethanol. The concentration of the solution taken is 2.5 mg/mL

Fig.S4(a) Transmission electron micrograph and (b) corresponding selected area electron diffraction (SAED) pattern of undopedMgO sample

Fig. S5X-ray photoelectron spectrum (with inset corresponding to spectrum recorded in energy range 120-190 ev)ofMg_{1-x}Eu_xO:(x/2)V"_{Mg}(x=0.01) samples

Fig. S6EDAX mapping showing elemental composition for $Mg_{1-x}Eu_xO:(x/2)V''_{Mg}(x=0.01)$ sample

Fig.S7FTIR spectra of MgO and $Mg_{1-x}Eu_xO:(x/2)V''_{Mg}(x=0.005)$ samples

Fig.S8Emission spectrum of $Mg_{1-x}Tb_xO:(x/2)V''_{Mg}(x=0.005)$ sample upon excitation with 270 nm UV light. A digital photograph of green color emission from $Mg_{1-x}Tb_xO:(x/2)V''_{Mg}(x=0.005)$ sample is also shown in the inset

REFERENCES

- 1. P. E. Blochl, *Phys. Rev. B*, 1994, 50, 17953.
- 2. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- 3. G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, 59, 1758.
- 4. G. Kresse and J. Furthmuller, *Phys. Rev. B*, 1996, 54, 11169.
- 5. R. F. W. Bader, Chem. Rev., 1991, 91, 893.
- 6. T. Myint, R. Gunawidjaja and H. Eilers, J. Phys. Chem. C, 2011, 116, 1687-1693.
- 7. F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini and M. Bettinelli, J. Phys. Chem. B, 2002, 106, 5622-5628.
- 8. M. L. Debasu, D. Ananias, A. G. Macedo, J. Rocha and L. s. D. Carlos, J. Phys. Chem. C, 2011, 115, 15297-15303.
- 9. H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou and S. Xia, J. Phys. Chem. B, 2004, 108, 19205-19209.
- 10. Y. Liu, W. Luo, R. Li, G. Liu, M. R. Antonio and X. Chen, J. Phys. Chem. C, 2008, 112, 686-694.
- 11. V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu and J. Liu, *Phys. Rev. B*, 2006, 73, 165317.
- 12. J. Yang, C. Li, Z. Quan, C. Zhang, P. Yang, Y. Li, C. Yu and J. Lin, J. Phys. Chem. C, 2008, 112, 12777-12785.
- 13. L. Peng, Y. Wang, Z. Wang and Q. Dong, *Appl. Phys. A*, 2011, 102, 387-392.