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1. System of equationsfor calculating the equilibrium concentr ations of the species B, BH™,
BH2",HA and A’

Here the symbol B for the base applies to either of the photochromic forms S, and S..

[ A |[BH']

L - 2K[HA s1
(] [HA] (S1)

(A lBr1
W—Kz[HA] (S2)
[B], =[B]+| BH" |+[BH'] (S3)
[HA], =[HA]+[A] ($4)
[HA], =[HA]+[BH" |+ 2[ BH}' | (S5)

2. Absorbance/Absor bance diagramsfor the spectral change on titration of S, by TFAH
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Figure S1 Absorbance vs. absorbance diagrams for the wavel engths of strongest spectral change during
titration of S, by TFAH (cf. Spectrain Figure 1).
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3. Simulated spectra of the three protolytic forms
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Figure S2 Simulated spectra of the three protolytic forms S, (black), SoH™ (blue) and S H3" (red) for

representative values of the equilibrium constants K; and K. In al cases, the fit of Ay ([TFAH]o) is
equally good. In case of the fit values K; = K, = 0.08 the spectrum of BH™ is best centered between those

of B and BH,"™. In thiscaseit is aso shown that the spectrum of SoH" is close to alinear combination of

the spectraof S, and S H5" (dashed blue curve).

4. Defining a pHnon-aq fOr @ non-aqueous apr otic solvent
In water, protolytic equilibria are related to solvated protons H3, , usually written as HsO", but often just

denoted H*. For example for a general base B
K
B+H' ——=BH" (S6)
According to the law of mass action, the equilibrium concentrations of B and BH" are determined by the

equilibrium constant Kg and the proton concentration [H]:



M: Ko[H"]=Kgx10™ (S7)
[B] B B
The acidity or protonating power of the solution is described by the pH defined as:
pH,, =—log[ H" | (S8)

In non-agueous aprotic solvents that cannot be protonated, the protons are donated by the undissociated
acid:
B+ HA£8H++A’ (S9)
Hence the ratio of equilibrium concentrations of B and BH" is given by:
[BH'] < [HA]

CIRNTN
Conseguently, for agiven acid HA, the acidity in a non-aqueous aprotic solvent may be defined by the

(S10)

ratio [HA]/[A"]. Hence the systematic generalization of the definition of pH for a non-aqueous aprotic

solvent containing the acid HA would be:

pH —log=——+ (S11)

non-aq = -
[A7]
and the concentration ratio of acid to base form is again uniquely determined by pHnon-a.

BH"
u =Ky x10 PFinon-aq (S12)
[B]
This concept is similar to the Hammet Hp function in superacid media.[S-52
5. Calculation of fractions of protolytic formsduring forward and back titration
In the following, base B represents either of the two photochromic forms S, and S; with its specific

equilibrium constants. The definitions:

BRI ok a0 s13
b= =2 (S13)

_[BHIT_ o 4o
b, = B K,10 (S14)

are useful to represent the fractions of the various protolytic forms:
_B_ 1 (S15)

[Blix 1+Db+Dbb
y=[BH1__ b (S16)

[Blw 1+b+bb

- [Bla 1t+b+bb,

Note that, depending on the case, the concentration [B]io refersto [ Syl OF [ Scliot. USing these fractions,

the absorbance at any wavelength is represented as:
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A(A4,pH)= A ()X +A (L)Y +A(1)Z (S18)

with the definitions

A= ng[ B]tot Ay = o ¢ [ B]tot A= 8BH§* ¢ [ B]tot (S19)

wherethe ¢ represent the molar extinctions coefficients of the various species and ¢ the optical path

length.

6. Derivations of the pH dependent quantum yields of individual protolytic forms

The time-dependence of thesum [S ], of the concentrations of the open formsis described by equation
((s20)):

+ 2+
d [SO]tot — I E(l_lo_A) _® SSOE[SO] _® gSOH»fEI:SoH :I _ €SOH§+£|:SOH2 :I
dt ov S A SR A SoH3" A
, (S20)
e8] e lISHT €[ SH ]
A SH’ A S A

where | isthe photon flux density, F the illuminated area of the cuvette, V the (stirred) volume of the
sample solution, A the total absorbance at the wavelength of irradiation, the various & parameters the
molar absorption coefficients of the respective species, and / the optical path length. Using the definitions
in Section 5 above and the expression for the photokinetic factor Fp

A

1107 (521
equation (S20) can be simplified to:
d [SO ]tot -1 F
dt = _Fpk lo V{((Dso Ab,lxo + (D30H+ Ab,zYo + (Dsng* Ab,3zo ) [So ]tot (s22)
- ((I)Sc A’:,lxc + (I)SCH+ At,ZYc + (I)SCH§+ At,fizc ) [SC ]tot}
Substituting [S.],, by:
[Scliot = [Sliot — [Soliot (S23)
yields:
d[s

0] Ol - F
— = _Fpkll 0 V{((Dso Ab,lxo + (DSOH+ AbZYo + (I)Sng Au,szo "'(I)sc At,lxc + (DSCH+ Athc + (I)SCHg+ At,szc ) [So]tot

dt
_((I)Sc At,lxc + (I)SCH* At,ZYC + (I)SCH? At,SZC ) [S]tot}
(S24)
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Within each kinetic run at a given pHnon.ag, the expressions in the round brackets of equation (S24) are
constant. They represent the analogues of the pseudo quantum yield Q in a photoreversible reaction with

one protolytic species only. Defining

Q=Q+Q

(S25)
= ((I)S0 A),lxo + q)SOH“' A),ZYO + q)SOH§+ A),SZO) + (q)Sc A}:,lxc + q)scH“' A,ZYC + q)SCH§+ AY:,3ZC)
with
Q=0g A, X, + Do ALYe + O o A Z, (S26)
Q=0 A X +D s AYe + O o AZ, (S27)
the photokinetic rate law simplifies to:
d|S .. F -
% =—F M, V{Q[s.o]tot - Q[S]tot} (S28)
The second term in parentheses is related to the PSS by:
Q[S]tot = Q[So]tot,pss (829)
Thus, equation (S28) can be written as
d [S ]O . . F
% =—F3l OVQ{[SO]K)t ~[Soliot e (S30)

Since [SO]0 o Islinearly related to the absorbance at any wavelength, an equation of the form of equation
(S30) isaso valid for the absorbance A at the observation wavelength of choice:

dA -1 F
= = Faclo QA= A] (S31)

Resolving equation (S29) for 5 yields an equation suitable for the experimental determination of 5 :
(:) = Q[So]tot,pss / [S]tot (832)

According to equation (S25) Q is obtained as

Q=Q-Q (S33)
In Figure S3, we show three fit versions assuming different values of K = Ky 1 =K, 2 equal to 0.06, 0.08,
0.1. In each fit, the value of ¢ isfixed to avalue of 0.0037, such that the Q valuein solution without
acid is exactly reproduced. The two other quantum yields ¢SOH+ ,and ¢sOH§ were |eft as freefitting

parameters.



For K = 0.06, the fit curve clearly rises too early when passing pHnon-aq = O to the negative direction. This
is due to the fact that the contribution of S;H must compensate for the late rise of the contribution of

SoH>’

Table S1 Data used to fit the individual quantum yields for the ring-closing isomerization of the
protolytic forms of S, induced by irradiation with 313 nm light.®

equiv TFAH Qa3 Asgs %open QBB . . . .

N % [So x10°  aPSS  inPSS . PHuonag” Xo™ Yoo Zo

0 0.457 0.129 0.46 0.209 3.03 0.999 0.000 0.000
1 0.54 0.127 0.45 0.244 -0.32 0.719 0.240 0.040
5 114 0.232 0.82 0.940 -0.75 0433 0.390 0.176
10 1.86 0.257 0.91 1.698 -0.95 0.290 0.414 0.295
20 3.32 0.267 0.95 3.150 -1.16 0.167 0.386 0.447
30 3.61 0.271 0.96 3.476 -1.30 0.108 0.345 0.548
50 3.75 0.273 0.97 3.638 -1.48 0.057 0.276 0.667
70 4.06 0.273 0.97 3.938 -1.60 0.036 0.230 0.734
140 5.63 0.273 0.97 5.461 -1.88 0.012 0.140 0.849

®Here, all calculations were carried out assuming K,; = K, = 0.08. PCalculated on the basis of equations
(S1)-(S5) and equation (S11). °“Theoretical coefficients calculated according to equations (S6) — (S10). To fit

the pHyon-og —dependence of QSB according to equation (S26), the following absorbances of the individual
protolytic species of S, were used: ASQ =0.706, ASO b = 0.704, and Agﬂ o = 0.687.
which is due to an obviously too low basicity of S;H™ for the K value chosen. However, then SgH*

already contributes too much in the overlapping region of S, and SH”™.
On the other hand, for K = 0.10, a negative quantum yield must be assumed for S;Hto compensate the

too early rising of the contribution of S ,H3" appearing as a consequence of an obviously somewhat to

high basicity of S, and SoH™.

Thevalue of K =0.08 liesjust in between the two latter cases and thus provides the best fit. Actually,
here too, the quantum yield for S;H™ is dightly negative, if complete freedom is admitted for the fit of
¢SOH+ , and ¢SOH5 . Itisdemonstrated in Figure S3, that setting ¢SOH+ to zero would not significantly affect

the qualitiy of the fit, and that the upper limit of ¢SOH+ , Set by the experimental accuracy, would be clearly

below avalue of 0.01.
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Figure S3 Fits of the pHnon.ay dependence of the observed partial pseudo quantum yield Q (black data
points), calculated for three cases of Ko 1 = Ko values. Black lines: total simulated value of Q, magenta
lines: contributions of S,, scaled by afactor of 10 for better visibility, blue lines: contributions of S H",
red lines: contributions of S H3". The fits were forced to reproduce the data point in non-acidified

solution exactly, thereby fixing the quantum yield for S, to ¢ = 0.0037. The other quantum yields were



Q
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obtained from afree least squares fit using Mathematica. In case of Koy = Ko> = 0.08, the effect of a

quantum yield adaptation for S;H™ isalso shown: ¢ .. =-0.0042 (freefit, solid blue line for
contribution of S;H to Q, solid black line for total valueof Q ), ¢SOH+ = 0.0 (set value, broken blue
horizontal line for contribution of S;H"to Q, lower broken black line for total value of Q), ¢, =001

(set value, upper broken blue line for contribution of S;H" to Q, upper broken black line for total value of

Q).

Thefit of the ring-opening photokinetics for irradiation at 313 nmis shown in Figure $4.
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Figure $4 Partitioning of pseudo quantum yield ¢ for the ring-opening isomerization at 313 nm into
contributions of individual protolytic forms of S; (magenta), S H* (blue) and S.H3" (red) of the closed
form as afunction of pHnon-aq. Red dots represent measured data points. The black curve represents the
best fit of the dataset with the following parameters: ASC =0.507, ASCH+ =0.543, ASCHE =0.570,

¢Sb =0.007, ¢SCH+ =0.001, ¢SCH5 = 0.004. Error margins of quantum yields £30%.
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