Supporting information for:

Large Protonation-Gated Photochromism of an OPE-Embedded Difurylperfluorocyclopentene

Jannic Wolf,^{\$,§} Thomas Huhn^{*,§} and Ulrich E. Steiner^{\$}

^{\$}Fachbereich Chemie, Universität Konstanz, D-78457 Konstanz, Germany; [§] Present address: Solar & Photovoltaics Engineering Research Center, King Abdullah University of Science and Technology, Thuwal 23955–6900, Saudi Arabia.

> Corresponding Author *E-mail: thomas.huhn@uni-konstanz.de.

Content:

- 1. System of equations for calculating the equilibrium concentrations of the species B, BH^+ , BH_2^{2+} , HA and A⁻
- 2. Absorbance/Absorbance diagrams for the spectral change on titration of S₀ by TFAH
- 3. Simulated spectra of the three protolytic forms
- 4. Defining a pH_{non-aq} in a non-aqueous aprotic solvent
- 5. Calculation of the fractions of the protolytic forms during forward and back titration
- 6. Derivations of the pH dependent quantum yields of individual protolytic forms

System of equations for calculating the equilibrium concentrations of the species B, BH⁺, BH²⁺₂, HA and A⁻

Here the symbol B for the base applies to either of the photochromic forms S_o and S_c .

$$\frac{\left[A^{-}\right][BH^{+}]}{[B]} = 2K_{1}[HA]$$
(S1)

$$\frac{\left[A^{-}\right]\left[BH_{2}^{2+}\right]}{\left[BH^{+}\right]} = K_{2}[HA]$$
(S2)

$$[\mathbf{B}]_0 = [\mathbf{B}] + [\mathbf{B}\mathbf{H}^+] + [\mathbf{B}\mathbf{H}_2^{2+}]$$
(S3)

$$[HA]_0 = [HA] + [A^-]$$
(S4)

$$\left[\mathrm{HA}\right]_{0} = \left[\mathrm{HA}\right] + \left[\mathrm{BH}^{+}\right] + 2\left[\mathrm{BH}_{2}^{2+}\right]$$
(S5)

2. Absorbance/Absorbance diagrams for the spectral change on titration of S_{o} by TFAH

Figure S1 Absorbance vs. absorbance diagrams for the wavelengths of strongest spectral change during titration of S_0 by TFAH (cf. Spectra in Figure 1).

3. Simulated spectra of the three protolytic forms

Figure S2 Simulated spectra of the three protolytic forms \mathbf{S}_0 (black), $\mathbf{S}_0 \mathbf{H}^+$ (blue) and $\mathbf{S}_0 \mathbf{H}_2^{2+}$ (red) for representative values of the equilibrium constants K_1 and K_2 . In all cases, the fit of $A_{\lambda}([TFAH]_0)$ is equally good. In case of the fit values $K_1 = K_2 = 0.08$ the spectrum of \mathbf{BH}^+ is best centered between those of B and \mathbf{BH}_2^{++} . In this case it is also shown that the spectrum of $\mathbf{S}_0 \mathbf{H}^+$ is close to a linear combination of the spectra of \mathbf{S}_0 and $\mathbf{S}_0 \mathbf{H}_2^{2+}$ (dashed blue curve).

4. Defining a pH_{non-aq} for a non-aqueous aprotic solvent

In water, protolytic equilibria are related to solvated protons H_{aq}^+ , usually written as H_3O^+ , but often just denoted H^+ . For example for a general base B

$$\mathbf{B} + \mathbf{H}^{+} \xleftarrow{K_{B}} \mathbf{B} \mathbf{H}^{+}$$
(S6)

According to the law of mass action, the equilibrium concentrations of B and BH⁺ are determined by the equilibrium constant K_B and the proton concentration [H⁺]:

$$\frac{\left[\mathsf{BH}^{+}\right]}{\left[\mathsf{B}\right]} = K_{B}[\mathsf{H}^{+}] = K_{B} \times 10^{-pH}$$
(S7)

The acidity or protonating power of the solution is described by the pH defined as:

$$pH_{aq} = -\log\left[\mathbf{H}^+\right] \tag{S8}$$

In non-aqueous aprotic solvents that cannot be protonated, the protons are donated by the undissociated acid:

$$B + HA \xleftarrow{K_B} BH^+ + A^-$$
(S9)

Hence the ratio of equilibrium concentrations of B and BH⁺ is given by:

$$\frac{\left\lfloor BH^{+} \right\rfloor}{[B]} = K_{B} \frac{[HA]}{[A^{-}]}$$
(S10)

Consequently, for a given acid HA, the acidity in a non-aqueous aprotic solvent may be defined by the ratio [HA]/[A⁻]. Hence the systematic generalization of the definition of pH for a non-aqueous aprotic solvent containing the acid HA would be:

$$pH_{non-aq} = -\log\frac{[\text{HA}]}{[\text{A}^-]} \tag{S11}$$

and the concentration ratio of acid to base form is again uniquely determined by pH_{non-aq}.

$$\frac{\left[\mathsf{BH}^{+}\right]}{\left[\mathsf{B}\right]} = K_{B} \times 10^{-pH_{non-aq}} \tag{S12}$$

This concept is similar to the Hammet H₀ function in superacid media.^[S1,S2]

5. Calculation of fractions of protolytic forms during forward and back titration

In the following, base B represents either of the two photochromic forms S_o and S_c with its specific equilibrium constants. The definitions:

$$b_1 \equiv \frac{[\mathbf{BH}^+]}{[\mathbf{B}]} = 2K_1 10^{-pH}$$
(S13)

$$b_2 \equiv \frac{[\mathbf{BH}_2^{2+}]}{[\mathbf{BH}^{+}]} = K_2 10^{-pH}$$
(S14)

are useful to represent the fractions of the various protolytic forms:

$$X = \frac{[B]}{[B]_{tot}} = \frac{1}{1 + b_1 + b_1 b_2}$$
(S15)

$$Y \equiv \frac{[BH^+]}{[B]_{tot}} = \frac{b_1}{1 + b_1 + b_1 b_2}$$
(S16)

$$Z \equiv \frac{[BH_2^{2+}]}{[B]_{tot}} = \frac{b_1 b_2}{1 + b_1 + b_1 b_2}$$
(S17)

Note that, depending on the case, the concentration $[B]_{tot}$ refers to $[S_0]_{tot}$ or $[S_c]_{tot}$. Using these fractions, the absorbance at any wavelength is represented as:

$$A(\lambda, pH) = A_1(\lambda)X + A_2(\lambda)Y + A_3(\lambda)Z$$
(S18)

with the definitions

$$A_{1} = \varepsilon_{B} \ell \begin{bmatrix} B \end{bmatrix}_{tot} \qquad A_{2} = \varepsilon_{BH^{+}} \ell \begin{bmatrix} B \end{bmatrix}_{tot} \qquad A_{3} = \varepsilon_{BH_{2}^{+}} \ell \begin{bmatrix} B \end{bmatrix}_{tot}$$
(S19)

where the ε_i represent the molar extinctions coefficients of the various species and ℓ the optical path length.

6. Derivations of the pH dependent quantum yields of individual protolytic forms

The time-dependence of the sum $[\mathbf{S}_{o}]_{tot}$ of the concentrations of the open forms is described by equation ((S20)):

$$\frac{d\left[\mathbf{S}_{\mathbf{o}}\right]_{tot}}{dt} = I_{0} \frac{F}{V} \left(1 - 10^{-A}\right) \left\{ -\Phi_{\mathbf{S}_{o}} \frac{\boldsymbol{\varepsilon}_{\mathbf{S}_{o}} \ell\left[\mathbf{S}_{\mathbf{o}}\right]}{A} - \Phi_{\mathbf{S}_{o}\mathbf{H}^{+}} \frac{\boldsymbol{\varepsilon}_{\mathbf{S}_{o}\mathbf{H}^{+}} \ell\left[\mathbf{S}_{\mathbf{o}}\mathbf{H}^{+}\right]}{A} - \Phi_{\mathbf{S}_{o}\mathbf{H}^{2+}} \frac{\boldsymbol{\varepsilon}_{\mathbf{S}_{o}\mathbf{H}^{2+}} \ell\left[\mathbf{S}_{\mathbf{o}}\mathbf{H}^{2+}\right]}{A} + \Phi_{\mathbf{S}_{c}} \frac{\boldsymbol{\varepsilon}_{\mathbf{S}_{c}} \ell\left[\mathbf{S}_{\mathbf{c}}\right]}{A} + \Phi_{\mathbf{S}_{c}\mathbf{H}^{+}} \frac{\boldsymbol{\varepsilon}_{\mathbf{S}_{c}\mathbf{H}^{+}} \ell\left[\mathbf{S}_{\mathbf{c}}\mathbf{H}^{+}\right]}{A} + \Phi_{\mathbf{S}_{c}\mathbf{H}^{2+}} \frac{\boldsymbol{\varepsilon}_{\mathbf{S}_{c}\mathbf{H}^{2+}} \ell\left[\mathbf{S}_{\mathbf{c}}\mathbf{H}^{2+}\right]}{A} \right\} \tag{S20}$$

where I_0 is the photon flux density, F the illuminated area of the cuvette, V the (stirred) volume of the sample solution, A the total absorbance at the wavelength of irradiation, the various ε parameters the molar absorption coefficients of the respective species, and ℓ the optical path length. Using the definitions in Section 5 above and the expression for the photokinetic factor F_{pk}

$$F_{pk} = \frac{A}{1 - 10^{-A}}$$
(S21)

equation (S20) can be simplified to:

$$\frac{d\left[\mathbf{S}_{\mathbf{o}}\right]_{tot}}{dt} = -F_{pk}^{-1}I_{0}\frac{F}{V}\left\{\left(\Phi_{\mathbf{S}_{o}}A_{o,1}X_{o} + \Phi_{\mathbf{S}_{o}\mathbf{H}^{+}}A_{o,2}Y_{o} + \Phi_{\mathbf{S}_{o}\mathbf{H}_{2}^{2+}}A_{o,3}Z_{o}\right)\left[\mathbf{S}_{\mathbf{o}}\right]_{tot} - \left(\Phi_{\mathbf{S}_{c}}A_{c,1}X_{c} + \Phi_{\mathbf{S}_{c}\mathbf{H}^{+}}A_{c,2}Y_{c} + \Phi_{\mathbf{S}_{c}\mathbf{H}_{2}^{2+}}A_{c,3}Z_{c}\right)\left[\mathbf{S}_{\mathbf{c}}\right]_{tot}\right\}$$
(S22)

Substituting $[\mathbf{S}_{\mathbf{c}}]_{\text{tot}}$ by:

$$[\mathbf{S}_{\mathbf{c}}]_{\text{tot}} = [\mathbf{S}]_{\text{tot}} - [\mathbf{S}_{\mathbf{0}}]_{\text{tot}}$$
(S23)

yields:

$$\frac{d\left[\mathbf{S}_{o}\right]_{tot}}{dt} = -F_{pk}^{-1}I_{0}\frac{F}{V}\left\{\left(\Phi_{S_{o}}A_{o,1}X_{o} + \Phi_{S_{o}H^{+}}A_{o,2}Y_{o} + \Phi_{S_{o}H_{2}^{+}}A_{o,3}Z_{o} + \Phi_{S_{c}}A_{c,1}X_{c} + \Phi_{S_{c}H^{+}}A_{c,2}Y_{c} + \Phi_{S_{c}H_{2}^{+}}A_{c,3}Z_{c}\right)\left[\mathbf{S}_{o}\right]_{tot}\right\}$$

$$-\left(\Phi_{S_{c}}A_{c,1}X_{c} + \Phi_{S_{c}H^{+}}A_{c,2}Y_{c} + \Phi_{S_{c}H_{2}^{+}}A_{c,3}Z_{c}\right)\left[\mathbf{S}\right]_{tot}\right\}$$
(S24)

Within each kinetic run at a given pH_{non-aq} , the expressions in the round brackets of equation (S24) are constant. They represent the analogues of the pseudo quantum yield Q in a photoreversible reaction with one protolytic species only. Defining

$$Q = \vec{Q} + \vec{Q}$$

= $\left(\Phi_{S_o} A_{o,1} X_o + \Phi_{S_o H^+} A_{o,2} Y_o + \Phi_{S_o H_2^{++}} A_{o,3} Z_o\right) + \left(\Phi_{S_c} A_{c,1} X_c + \Phi_{S_c H^+} A_{c,2} Y_c + \Phi_{S_c H_2^{++}} A_{c,3} Z_c\right)$ (S25)

with

$$\hat{Q} = \Phi_{S_o} A_{o,1} X_o + \Phi_{S_o H^+} A_{o,2} Y_o + \Phi_{S_o H_2^{2+}} A_{o,3} Z_o$$
(S26)

$$\bar{Q} = \Phi_{S_c} A_{c,1} X_c + \Phi_{S_c H^+} A_{c,2} Y_c + \Phi_{S_c H_2^{2+}} A_{c,3} Z_c$$
(S27)

the photokinetic rate law simplifies to:

$$\frac{d\left[\mathbf{S}_{\mathbf{o}}\right]_{tot}}{dt} = -F_{pk}^{-1}I_0 \frac{F}{V} \left\{ Q[\mathbf{S}_{\mathbf{o}}]_{tot} - \bar{Q}[\mathbf{S}]_{tot} \right\}$$
(S28)

The second term in parentheses is related to the PSS by:

$$Q[\mathbf{S}]_{tot} = Q[\mathbf{S}_{\mathbf{0}}]_{tot,pss}$$
(S29)

Thus, equation (S28) can be written as

$$\frac{d\left[\mathbf{S}_{\mathbf{o}}\right]_{o,tot}}{dt} = -F_{pk}^{-1}I_{0}\frac{F}{V}Q\left\{\left[\mathbf{S}_{\mathbf{o}}\right]_{tot} - \left[\mathbf{S}_{\mathbf{o}}\right]_{tot,pss}\right\}$$
(S30)

Since $[\mathbf{S}_{\mathbf{0}}]_{o,tot}$ is linearly related to the absorbance at any wavelength, an equation of the form of equation (S30) is also valid for the absorbance *A* at the observation wavelength of choice:

$$\frac{dA}{dt} = -F_{pk}^{-1}I_0 \frac{F}{V}Q\left\{A - A_{pss}\right\}$$
(S31)

Resolving equation (S29) for \overleftarrow{Q} yields an equation suitable for the experimental determination of \overleftarrow{Q} :

$$\bar{Q} = Q[\mathbf{S}_{\mathbf{0}}]_{tot, pss} / [\mathbf{S}]_{tot}$$
(S32)

According to equation (S25) \vec{Q} is obtained as

$$\vec{Q} = Q - \vec{Q} \tag{S33}$$

In **Figure S3**, we show three fit versions assuming different values of $K \equiv K_{o,1} = K_{o,2}$ equal to 0.06, 0.08, 0.1. In each fit, the value of ϕ_{S_o} is fixed to a value of 0.0037, such that the \vec{Q} value in solution without acid is exactly reproduced. The two other quantum yields $\phi_{S_oH^+}$, and $\phi_{S_oH^+_2}$ were left as free fitting parameters.

For K = 0.06, the fit curve clearly rises too early when passing pH_{non-aq} = 0 to the negative direction. This is due to the fact that the contribution of $\mathbf{S}_0 \mathbf{H}^+$ must compensate for the late rise of the contribution of $\mathbf{S}_0 \mathbf{H}_2^{2+}$

equiv TFAH	Q_{313}	A ₅₈₃	%open	\vec{Q}_{313}	rr b	T 7 C	NZ C	
$n \times [S]_{tot}$	$\times 10^{6}$	at PSS	in PSS	$ imes 10^{6}$	pH _{non-aq}	Λ_0	Y _o	Z_0
0	0.457	0.129	0.46	0.209	3.03	0.999	0.000	0.000
1	0.54	0.127	0.45	0.244	-0.32	0.719	0.240	0.040
5	1.14	0.232	0.82	0.940	-0.75	0.433	0.390	0.176
10	1.86	0.257	0.91	1.698	-0.95	0.290	0.414	0.295
20	3.32	0.267	0.95	3.150	-1.16	0.167	0.386	0.447
30	3.61	0.271	0.96	3.476	-1.30	0.108	0.345	0.548
50	3.75	0.273	0.97	3.638	-1.48	0.057	0.276	0.667
70	4.06	0.273	0.97	3.938	-1.60	0.036	0.230	0.734
140	5.63	0.273	0.97	5.461	-1.88	0.012	0.140	0.849

Table S1 Data used to fit the individual quantum yields for the ring-closing isomerization of the protolytic forms of S_0 induced by irradiation with 313 nm light.^a

^a Here, all calculations were carried out assuming $K_{o,1} = K_{o,2} = 0.08$. ^bCalculated on the basis of equations (S1)-(S5) and equation (S11). ^cTheoretical coefficients calculated according to equations (S6) – (S10). To fit the pH_{non-aq} –dependence of \vec{Q}_{313} according to equation (S26), the following absorbances of the individual protolytic species of **S**₀ were used: $A_{S_0} = 0.706$, $A_{S_0 H^+} = 0.704$, and $A_{S_0 H_2^{2+}} = 0.687$.

which is due to an obviously too low basicity of S_0H^+ for the *K* value chosen. However, then S_0H^+ already contributes too much in the overlapping region of S_0 and S_0H^+ .

On the other hand, for K = 0.10, a negative quantum yield must be assumed for $\mathbf{S}_0 \mathbf{H}^+$ to compensate the too early rising of the contribution of $\mathbf{S}_0 \mathbf{H}_2^{2+}$ appearing as a consequence of an obviously somewhat to high basicity of \mathbf{S}_0 and $\mathbf{S}_0 \mathbf{H}^+$.

The value of K = 0.08 lies just in between the two latter cases and thus provides the best fit. Actually, here too, the quantum yield for \mathbf{S}_{0} H⁺ is slightly negative, if complete freedom is admitted for the fit of $\phi_{\mathbf{S}_{0}H^{+}}$, and $\phi_{\mathbf{S}_{0}H^{+}}$. It is demonstrated in **Figure S3**, that setting $\phi_{\mathbf{S}_{0}H^{+}}$ to zero would not significantly affect the quality of the fit, and that the upper limit of $\phi_{\mathbf{S}_{0}H^{+}}$, set by the experimental accuracy, would be clearly below a value of 0.01.

Figure S3 Fits of the pH_{non-aq} dependence of the observed partial pseudo quantum yield \vec{Q} (black data points), calculated for three cases of $K_{o,1} = K_{o,2}$ values. Black lines: total simulated value of \vec{Q} , magenta lines: contributions of \mathbf{S}_{o} , scaled by a factor of 10 for better visibility, blue lines: contributions of $\mathbf{S}_{o}H^{+}$, red lines: contributions of $\mathbf{S}_{o}H^{2+}$. The fits were forced to reproduce the data point in non-acidified solution exactly, thereby fixing the quantum yield for \mathbf{S}_{o} to $\phi_{\mathbf{S}_{o}} = 0.0037$. The other quantum yields were

obtained from a free least squares fit using *Mathematica*. In case of $K_{ol} = K_{o,2} = 0.08$, the effect of a quantum yield adaptation for $\mathbf{S}_0 \mathbf{H}^+$ is also shown: $\phi_{\mathbf{S}_0 \mathbf{H}^+} = -0.0042$ (free fit, solid blue line for contribution of $\mathbf{S}_0 \mathbf{H}^+$ to \vec{Q} , solid black line for total value of \vec{Q}), $\phi_{\mathbf{S}_0 \mathbf{H}^+} = 0.0$ (set value, broken blue horizontal line for contribution of $\mathbf{S}_0 \mathbf{H}^+$ to \vec{Q} , lower broken black line for total value of \vec{Q}), $\phi_{\mathbf{S}_0 \mathbf{H}^+} = 0.01$ (set value, upper broken blue line for contribution of $\mathbf{S}_0 \mathbf{H}^+$ to \vec{Q} , upper broken black line for total value of \vec{Q}).

The fit of the ring-opening photokinetics for irradiation at 313 nm is shown in Figure S4.

Figure S4 Partitioning of pseudo quantum yield \bar{Q} for the ring-opening isomerization at 313 nm into contributions of individual protolytic forms of \mathbf{S}_{c} (magenta), $\mathbf{S}_{c}H^{+}$ (blue) and $\mathbf{S}_{c}H_{2}^{2+}$ (red) of the closed form as a function of pH_{non-aq}. Red dots represent measured data points. The black curve represents the best fit of the dataset with the following parameters: $A_{\mathbf{S}_{c}} = 0.507$, $A_{\mathbf{S}_{c}H^{+}} = 0.543$, $A_{\mathbf{S}_{c}H_{2}^{+}} = 0.570$,

 $\phi_{\mathbf{S_c}} = 0.007, \ \phi_{\mathbf{S_cH^+}} = 0.001, \ \phi_{\mathbf{S_cH^+}} = 0.004.$ Error margins of quantum yields ±30%.

References:

- S1) Hammett, L. P.; Deyrup, A. J., J. Am. Chem. Soc. 1932, 54, 2721-2739.
- S2) Hammett, L. P., *Physical organic chemistry: reaction rates, equilibria, and mechanisms*. McGraw-Hill Book Company, 1940.