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Maciej Śmiechowski,∗,†,‡ Jian Sun,†,¶ Harald Forbert,† and Dominik Marx†

Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany

E-mail: Maciej.Smiechowski@theochem.rub.de

∗To whom correspondence should be addressed
†Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
‡Present address: Department of Physical Chemistry, Chemical Faculty, Gdańsk University of Technology,

Narutowicza 11/12, 80-233 Gdańsk, Poland
¶Present address: Department of Physics and National Laboratory of Solid State Microstructures, Nanjing

University, Nanjing 210093, China

S1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2015



Computational Methods

The DFT-based AIMD simulations1 were carried out using the CP2k package.2,3 We em-

ployed the PBE functional,4 a TZV2P basis set for atomic orbitals,2 and a 600 Ry cutoff for

the auxiliary plane wave expansion of the density. The core electrons (1s2 for Na+, 1s22s22p6

for Cl–) were represented by dual-space norm-conserving pseudo potentials.5 The systems

consisted of 64 H2O molecules and a single ion. Periodic boundary conditions were applied

and each system was contained in a cubic supercell with volume set to reproduce the den-

sity of H2O at 298 K (0.997 kg/m3) combined with the ion’s standard partial molar volume

in water (V ∞(Na+) = –6.62 cm3/mol, V ∞(Cl−) = 23.24 cm3/mol),6 thus L = 12.41 and

12.51 Å for Na+ and Cl–, respectively. The systems have been equilibrated for 15 ps at an

elevated temperature of 400 K in the canonical (NV T ) ensemble using massive Nosé-Hoover

chain thermostatting.1 This choice of the target temperature was demonstrated previously

to provide good agreement for the PBE functional with the ambient temperature experimen-

tal data for bulk liquid water.7 After the equilibration period, 32 statistically independent

initial conditions were sampled every 2–3 ps from a further NV T simulation to initialize

microcanonical (NV E) trajectories of 20 ps length using a time step of 0.5 fs. During the

latter runs the centers of maximally localized Wannier functions (MLWFs)8 were computed

in an on-the-fly manner every 2 fs and molecular dipole moments were constructed using

the centers of these functions. The distance-dependent absorption coefficient was calculated

from eqn (S15) using the sharpness parameter D = 0.25 Å. To obtain radially-resolved

IR spectra and a correspondingly generalized VDOS, gVDOS, the local dipole and velocity

densities according to eqns (S5) and (S10) were computed on a cubic grid with a spacing of

0.539 Å for Na+(aq) and 0.544 Å for Cl–(aq) (23×23×23 grid points) using a regularization

parameter σ = 0.4 Å. All analyzed observables have been averaged over the 32 independent

NV E trajectories yielding canonical averages.
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Radial distribution functions

In the main text, we briefly mention the static structure of the hydration shells of Na+ and

Cl–, as revealed by radial distribution functions. We note in passing that we expect these

analyses to be exceptionally well converged in view of the exhaustive sampling of initial

conditions required to generate distance-resolved IR spectra. To visualize the structure of

the ionic hydration shells, we present here gXO(r) and gXH(r) RDFs for the studied ions in

Fig. S1. The most relevant parameters of the RDFs are gathered in Table S1. Our data
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Figure S1: Radial distribution functions g(r) (solid lines, left axis) and their running inte-
gration numbers n(r) (dashed lines, right axis) for ion–water oxygen (bottom) and ion–water
hydrogen (top) pairs for Na+ (red) and Cl– (green).

compare favourably with the most recent experimental and AIMD studies, as mentioned in

the main text.

Table S1: Location of the first maxima of the radial distribution functions and
normalized integration of the corresponding first peaks up to their first minima
(first shell coordination numbers) of Na+(aq) and Cl–(aq) as indicated.

Ion Rmax
XO /Å nI

XO Rmax
XH /Å nI

XH

Na+ 2.40 5.3 2.98 14.7
Cl– 3.12 5.7 2.88 5.2
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To further investigate the relative statistical weight of differently coordinated ion com-

plexes in our simulations, we present in Fig. S2 a histogram of the X–O integer coordination

number for the two ions, defined as the number of water oxygens up to the distance of the

first minimum in the corresponding RDF, gXO(r). While numerous force field based MD
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Figure S2: Integer coordination number (CN) distributions calculated by counting the num-
ber of water oxygen atoms up to the first minimum in gXO(r) for Na+ (red) and Cl– (green)
according to the data shown in Fig. S1.

simulations predicted a hexahydrated sodium cation in aqueous solutions (see Ref. 9 for a

review) – thus contradicting experimental findings – it was noted early on that the dominant

CN value for Na+ is five according to electronic structure based AIMD simulations,9–13 as

also found here, where CN = 5 occurs in about 50% of the configurations. The preferred

arrangement of this complex is close to square pyramidal in the present simulations. For the

chloride anion, the hydration sphere appears to be more fluxional since it features penta-

and hexahydrated complexes with approximately equal share of CN =5 and 6 together with

a wide spread of possible CNs down to CN = 3 and up to 8; the histogram itself is in perfect

agreement with previously published ones.12,14 A similar coordination mechanism has been

recently found for F–(aq),15 where CNs of four and five are most preferred in turn.

S4



Dipole moment distributions

In the main text, we stress the vastly different induced dipole moments of the monatomic

ions once they become aqua ions in solution, Na+(aq) and Cl–(aq), that prove to be crucial to

understand the pronounced high-frequency correlations for Cl–(aq) in both radially-resolved

and distance-dependent IR spectra, which are completely absent in the essentially non-

polarizable Na+(aq) case. This mirrors the findings in the case of Li+(aq) and F–(aq) as

recently studied by us.15 Here, we illustrate our concepts further by presenting distribution

functions of the molecular dipole moments for water molecules and both ions in Fig. S3.
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Figure S3: Normalized distribution functions of the molecular dipole moments of water
molecules in the first solvation shell of Na+ (red) and Cl– (green) in comparison to bulk
water (black). Inset: Normalized distribution functions of the induced dipole moments of
the ions in aqueous solution measured with respect to their center-of-mass using the same
color code. The extremely narrow distribution for Na+ was scaled by a factor of 0.03 to
facilitate comparison.

The polarization of the solvent by the ions’ electric field lowers the molecular dipole

moments of the first solvation shell water molecules in both cases to 〈µ〉 = 2.90 D for

Na+(aq) and 2.98 D for Cl–(aq), with respect to the corresponding bulk value, 〈µ〉 = 3.04 D,

as obtained using the same simulation setup.15 The standard statistical error bars of the

mean values are estimated to be only about ±0.01 D, while the widths of the essentially

Gaussian distributions, as measured by their standard deviation, are ±0.23 D for bulk water

and ±0.21 D for first solvation shells of both ions. The lowering of the molecular dipole
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moments of the first shell water molecules is accompanied by no substantial changes in the

widths of their distributions compared to bulk water molecules. These findings are also

consistent with earlier reports,11,16,17 but recall the exceptional statistical quality of the

present data.

The explicit representation of the ions’ electronic structure in our AIMD simulations

allows us also to estimate the induced dipole moment of the ions in the liquid state (see

inset in Fig. S3). We find 〈µion〉 equal to 0.77 D for Cl–(aq), which is consistent with the

previous estimate of 0.82 D from AIMD simulations.16 On the other hand, the Na+(aq) cation

behaves, not unexpectedly, like an almost nonpolarizable point charge in our simulations.

The magnitude of the induced dipole moment never exceeds 0.07 D and the average value

is 0.023 D as seen by the (scaled down and extremely narrow) spike close to the origin in

Fig. S3. As already mentioned in the main text, the latter finding is especially important

considering that the entire 2s22p6 electron shell of Na+ is represented explicitly in our AIMD

simulations, i.e., we employ in this work a quite hard pseudopotential only for the 1s2 shell.

Spatial decomposition of infrared spectra

Here, we review for the convenience of the reader of this Communication the detailed spectra

decomposition procedure that leads to distance-dependent and radially-resolved spectra, as

presented in Figs. 1, 2, and 4 in the main text. The derivation for solute-solvent systems is

based on the recently published paper,15 which in turn generalizes the methodology originally

employed for describing IR absorption in bulk liquid water, both in the radially-resolved7

and in the fully three-dimensional picture.18

The isotropic IR absorption coefficient per unit length is obtained in linear response

theory from the Fourier transform of the (classical) total dipole moment of the systemM (t).

However, since in a charged system the dipole moment depends on the arbitrarily chosen

origin of the coordinate system, in this work we use exclusively the dipole moment time
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derivative, Ṁ(t), which can also be identified as the total charge current, so that the linear

absorption coefficient is calculated as

α(ω) = F (ω)

∫ ∞
−∞

dte−iωt〈Ṁ (0)Ṁ (t)〉 . (S1)

In order to satisfy the detailed balance condition obeyed by the exact quantum correlation

function, eqn (S1) needs to be asymmetrized, which is done by multiplying it using a suitable

frequency-dependent prefactor F (ω), which is often denoted as the “quantum correction

factor” (QCF) in the literature. The so-called “harmonic QCF”,

F (ω) =
1

n(ω)

1

4πε0

2πβ

3V c
, (S2)

has been demonstrated to work especially well for the typical anharmonic vibrational po-

tentials describing H-bonded systems and has found a sound theoretical justification in

addition;19 note that this does not impose the harmonic approximation when computing

IR spectra and that the same harmonic QCF has been applied without any adjustment to

all reported IR spectra including the decomposed ones. In eqn (S2) the system has volume

V , the canonical thermal average 〈· · · 〉 is evaluated at temperature T , β = 1/kBT , n(ω) is

the refractive index of the sample, and other symbols carry their usual meanings.

The total dipole moment of a system composed of interacting molecules can be decom-

posed rigorously into a sum of effective (molecular) dipole moments,20–22M (t) =
∑N

I=1µI(t),

calculated using the centers of the maximally localized Wannier functions (MLWFs).8 How-

ever, since the MLWF centers are discretely sampled along the trajectory their exact veloci-

ties are unavailable, which necessitates the use of finite differences for all degrees of freedom

to describe the dipole moment time evolution as µ̇ ≈ δµ/δt, where δt is the time step of

the dipole trajectory. To recover the exact results the F (ω) prefactor in eqn (S2) in all

respective Fourier transforms is multiplied by an additional sinc−2(ωδt
2
) factor to account for

time discretization (vide infra).
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For a single ion in liquid water, we may decompose the total charge current as follows

Ṁ (t) = µ̇ion(t) + µ̇wat(t) = µ̇ion(t) +
solvent∑
I

µ̇I(t) , (S3)

where µ̇I(t) is the dipole moment derivative of the Ith water molecule in solution at time

t. This approach allows for the decomposition of the time correlation function (TCF) of

the total charge current, CMM(t) = 〈Ṁ(0)Ṁ (t)〉, into auto- and cross-correlations of the

ion/water contributions

CMM(t) = Cii(t) + Cww(t) + Ciw(t)

= 〈µ̇ion(0)µ̇ion(t)〉+ 〈µ̇wat(0)µ̇wat(t)〉+ 〈µ̇ion(0)µ̇wat(t)〉+ 〈µ̇wat(0)µ̇ion(t)〉 , (S4)

that help to identify the respective contributions to the IR spectrum.23,24 The solute and

solvent component spectra, αion(ω) and αwat(ω), can be obtained by separate Fourier trans-

forms of the two initial terms in eqn (S4), see panel (e) in Fig. 4 (main text) for an example

of αion(ω) spectra.

As a significant generalization of this long-established approach, we have recently pro-

posed7 (see Ref. 18 for generalization) to decompose the total dipole moment (or its time

derivative) by defining a smooth local current density of the form

j(t, r) =
N∑
I=1

µ̇I(t)
1

(2πσ2)3/2
exp

[
−(RI(t)− r)2

2σ2

]
, (S5)

whereRI(t) is the center-of-mass of the Ith molecule, the regularization parameter σ controls

the Gaussian smearing of the current density, and the decomposition is performed on a reg-

ular cubic grid r. Note that the total charge current is recovered from Ṁ (t) =
∫
V
dr j(t, r)

integration. Here, we exploit the two-component nature of the studied systems to introduce
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an ion-centered TCF,

Cµj(t, r) = 〈µ̇ion(0)j(t, r)〉 = 4πr2〈µ̇ion(0)j(t, r)〉 = 4πr2Crad
µj (t, r) , (S6)

thus choosing the single solute molecule as a natural reference point. The angular averaging

in eqn (S6) comes from the longtime isotropic nature of the homogeneous liquid systems as

viewed from the perspective of the solute. Fourier transforming the current-current density

TCF,

αx(ω) = F (ω)

∫ ∞
0

dr

∫ ∞
−∞

dte−iωt4πr2Crad
µj (t, r) =

∫ ∞
0

dr αx(ω, r) , (S7)

we arrive finally at the radially-resolved IR spectrum of the system, αx(ω, r).

The significance of the absorption coefficient defined above lies in its ability to disentan-

gle the spectra at each frequency ω in terms of radially dependent contributions around the

solute, i.e., in terms of solvation-shell-resolved contributions to the total IR spectrum. How-

ever, in contrast to the previous approach for one-component systems,7 what is recovered in

the final integration in eqn (S7) is not the total IR spectrum α(ω) from eqn (S1), but rather

a cross-correlation spectrum between the solute and the total charge current,

αx(ω) = F (ω)

∫ ∞
−∞

dte−iωt〈µ̇ion(0)Ṁ (t)〉 . (S8)

In analogy to the radially-resolved versions of the IR spectrum, we also introduced7 a

generalized version (gVDOS) of the usual vibrational density of states (VDOS)

I(ω) =

∫ ∞
−∞

dte−iωt〈ui(0)ui(t)〉 , (S9)

where ui(t) =
√
mivi(t) is the mass-weighted velocity of the ith atom and the TCF includes
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averaging over all atoms. We now define the local velocity density as

ρu(t, r) =
Nat∑
i=1

ui(t)
1

(2πσ2)3/2
exp

[
−(ri(t)− r)2

2σ2

]
. (S10)

In analogy to eqn (S6) we define a similar TCF (again using the ion as natural reference

point),

Cuρ(t, r) = 〈uion(0)ρu(t, r)〉 = 4πr2〈uion(0)ρu(t, r)〉 = 4πr2Crad
uρ (t, r) , (S11)

and after Fourier transforming we obtain the radially-resolved function Ix(ω, r),

Ix(ω) =

∫ ∞
0

dr

∫ ∞
−∞

dte−iωt4πr2Crad
uρ (t, r) =

∫ ∞
0

dr Ix(ω, r) . (S12)

Also here the obtained spectrum is the “cross” rather than the total variant, so that

Ix(ω) =

∫ ∞
−∞

dte−iωt〈uion(0)
Nat∑
i=1

ui(t)〉 . (S13)

Complementary to αx(ω, r), the Ix(ω, r) spectrum reveals correlations in particle motion

rather than dipolar ones. However, in contrast to the IR absorption there is no “global”

counterpart here, as the usual definition of VDOS by means of eqn (S9) does not include

cross-correlations of particle velocities.

As yet another way of spatially disentangling the vibrational spectrum, the distance-

dependent absorption coefficient7 offers a detailed picture of how the solvation environment

induces characteristic modulations of the IR absorbance around the solute. For the present

purpose, it is based on auto-correlating the dipole moment derivative within a finite spherical

region around an ion,

µ̇P
ion(t) = N P

ion(t)

(
µ̇ion(t) +

solvent∑
I

Pion,I(t)µ̇I(t)

)
, (S14)
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where the contributing solvent molecules are selected using Fermi’s cutoff function, Pion,I(t) =

1/{1+exp[(Rion,I(t)−R0)/D]}, controlled by cutoff radius R0 and sharpness D. To properly

account for the (fractional) number of the neighboring solvent molecules I, the distance-

dependent dipole moment velocity is normalized with the N P
ion(t) = [1 +

∑
I P

2
ion,I(t)]

−1/2

factor. Based on this projection of the charge current of the system, the distance-dependent

absorption coefficient of the ion-centered region is defined as

αP
ion(ω,R0) = F (ω)

∫
dte−iωt〈µ̇P

ion(0)µ̇
P
ion(t)〉 . (S15)

note that the transition at R0 is ensured to be continuous with respect to the (fractional)

number of solvent molecules by applying the smooth Fermi cutoff function. Moreover, no

dangling OH bonds are produced at the boundary of the sphere (and thus no free OH stretch-

ing vibrations are introduced by our procedure) since the projector Pion,I(t) acts according to

eqn (S14) on the effective molecular dipole (velocities) of the water molecules, µ̇I(t), and not

on the individual atoms and Wannier centers that constitute these molecules. Therefore, we

are not artificially carving out from the simulation box a real cluster consisting of a certain

integer number of water molecules (which would naturally leave some free OH bonds on its

surface), but we rather project out of the periodic bulk environment an embedded cluster

with a smooth boundary which contains fractional water molecules in terms of their dipole

moment contributions.

The significance of the αP
ion(ω,R0) spectrum is best revealed by considering the limiting

cases. For R0 → 0 the distance-dependent spectrum and the αion(ω) spectrum are identical,

as µ̇P
ion(t) ' µ̇ion(t) in this limit. However, in contrast to the radially-resolved IR spectrum

that only recovers the cross-correlation spectrum from eqn (S8) in the large distance limit,

the distance-dependent dipole moment velocity has a limiting behavior µ̇P
ion(t)→ Ṁ(t)/

√
N ,

where N is the number of molecules in the system, as easily inferred from eqn (S14). There-

fore, the total IR absorption spectrum from eqn (S1) is simply recovered by multiplication,

S11



α(ω) = NαP
ion(ω,R0 → ∞). Most interesting is of course the intermediate regime, where

αP
ion(ω,R0) probes the distinct responses of successive hydration shells of the ion.

The relation between the continuous time derivative and

its finite difference estimate

The time derivative of the dipole moment (either totalM or molecular µ) is in our approxi-

mation not a genuine time derivative (Ṁ or µ̇), but rather a finite difference estimate (δM

or δµ), where δM = (M (t + δt)−M (t))/δt. This is a direct consequence of the fact that

velocities for Wannier functions’ centers are unavailable in the iterative scheme and must

be approximated by taking finite differences of their positions at times t + δt and t. Below

we present a detailed derivation of the respective correction factor for an autocorrelation

function of a finite difference property.
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IM (ω) =

∞∫
−∞

dτ e−iωτ 〈M (t+ τ)M (t)〉t

δM (t) = (M(t+ δt)−M (t))/δt

IδM (ω) =

∞∫
−∞

dτ e−iωτ 〈δM (t+ τ)δM (t)〉t

=
1

δt2

∞∫
−∞

dτ e−iωτ 〈M (t+ δt+ τ)M(t+ δt)〉t −
1

δt2

∞∫
−∞

dτ e−iωτ 〈M(t+ δt+ τ)M (t)〉t

− 1

δt2

∞∫
−∞

dτ e−iωτ 〈M(t+ τ)M (t+ δt)〉t +
1

δt2

∞∫
−∞

dτ e−iωτ 〈M (t+ τ)M(t)〉t

=
1

δt2

∞∫
−∞

dτ e−iωτ 〈M (t+ τ)M(t)〉t −
1

δt2

∞∫
−∞

d(τ + δt) e−iω(τ+δt) eiωδt 〈M(t+ (τ + δt))M(t)〉t

− 1

δt2

∞∫
−∞

d(τ − δt) e−iω(τ−δt) e−iωδt 〈M (t+ (τ − δt))M (t)〉t +
1

δt2

∞∫
−∞

dτ e−iωτ 〈M (t+ τ)M (t)〉t

=
1

δt2
(IM (ω)− eiωδtIM (ω)− e−iωδtIM (ω) + IM (ω))

=
1

δt2
(
2− eiωδt − e−iωδt

)
IM (ω) =

2− 2 cos(ωδt)

δt2
IM (ω) =

4 sin2(ωδt
2
)

δt2
IM (ω)

IδM (ω) =

(
2

δt
sin

ωδt

2

)2

IM (ω)

IṀ (ω) = ω2IM (ω) =
ω2(

2
δt
sin ωδt

2

)2 IδM (ω) = sinc−2
ωδt

2
IδM (ω)

Numerical Kramers-Kronig transforms

The complex dielectric function, εr(ω) = ε′r(ω) + iε′′r(ω), obeys the Kramers-Kronig relation

ε′r(ω) = 1 +
2

π
P

∫ ∞
0

ω′ε′′r(ω
′)

ω′2 − ω2
dω′ (S16)
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for ω ≥ 0 and P denoting the principal value of the integral. The complex dielectric func-

tion is also connected to the complex refractive index, n̂(ω) = n(ω) + ik(ω), via n̂2(ω) =

εr(ω)µr(ω).

Assuming that the relative magnetic permeability, µr(ω), is unity for most dielectrics, and

connecting imaginary refractive index and linear absorption coefficient via k(ω) = c
2ω
α(ω),

we can relate respective components of the complex dielectric function and the complex

refractive index, so that

ε′r(ω) = n2(ω)− c2

4ω2
α2(ω) ,

ε′′r(ω) =
c

ω
α(ω)n(ω) =

c

ω
Iα(ω) , (S17)

where Iα(ω) is the (entangled) spectrum typically derived from the total dipole moment

evolution during an MD trajectory, see above.

The integral in eqn (S16) must be split into three ranges due to the lack of electronic

excitation spectrum in our AIMD simulation:

1. Up to the maximal frequency ωmax ≈ 8340 cm–1, as determined by the time resolution

of our AIMD simulation, we can calculate the integral directly, avoiding the pole at

ω = ω′ by separating the integrand into two functions,

P

∫ ωmax

0

ω′ε′′r(ω
′)

ω′2 − ω2
dω′ = P

∫ ωmax

0

ε′′r(ω)

2(ω′ − ω)
dω′ +

∫ ωmax

0

ω′ε′′r (ω
′)

ω′+ω
− ε′′r (ω)

2

ω′ − ω
dω′ . (S18)

Here, the first integral is just ε′′r (ω)
2

ln ωmax−ω
ω

and the second integral is easily evaluated

numerically, since

lim
ω′→ω

ω′ε′′r (ω
′)

ω′+ω
− ε′′r (ω)

2

ω′ − ω
=
ε′′r(ω)

4ω
+

1

2

dε′′r(ω)

dω
. (S19)

2. For ωmax < ω < ωel, where ωel is the lowest electronic excitation frequency, the imagi-

nary dielectric function ε′′r(ω′)→ 0 and the respective integral is also close to 0.
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3. For ω > ωel we have ω′ � ω and therefore ω′2 − ω2 ≈ ω′2. Thus, this range of the

integral only contributes a nearly constant offset,

2

π

∫ ∞
ωmax

ε′′r(ω
′)

ω′
dω′ = const ≈ n2

gap − 1 , (S20)

where ngap is the nearly constant value of the refractive index in the optical gap,

ωmax < ω < ωel, which for water and solutions of substances non-absorbing in the

visible range may be approximated by the experimentally measured sodium D–line

value at 589 nm, nD. This value is determined here from the experimental value for a

0.8 molal NaCl solution (approximately our simulated concentration), nD = 1.34.25

Once the real part of the dielectric function is determined, we can revert to eqn (S17) to

obtain α(ω) and n(ω) separately as

α(ω) =
ω

c

√
2
(√

ε′2r (ω) + ε′′2r (ω)− ε′r(ω)
)
,

n(ω) =

√
ε′r(ω) +

√
ε′2r (ω) + ε′′2r (ω)

2
. (S21)
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