Reactions of Allylic Radicals that Impact Molecular Weight Growth Kinetics

Kun Wang, Stephanie M. Villano, and Anthony M. Dean*

Supporting Information

Table S1: Apparent temperature-and pressure-dependent rate constants for the recombination reactions of two stabilized radicals from 0.001-50 atm and 300-2500 K.

Figure S1: Pathways leading to formation of aromatic species after recombination of methyl-allyl and allyl radicals.

Figure S2: Simplified C_6H_9 PES depicting the energetics of the reaction sequence after hydrogen abstraction from the initially-formed linear adduct in the recombination of two allyl radicals. (The numbers are enthalpies (kcal/mol) at 298K based on CBS-QB3 calculations; the numbers in parenthesis are based on rate rule estimates)

Table S2: High pressure limit rate constants for reactions shown in the C_6H_9 PES in Figure S2 and Figure 5 in text (based on CBS-QB3 calculations).

Table S3: Rate constants at 1 atm for the reactions shown in the C_6H_9 PES in Figure S2 and Figure 5 in text for the temperature range 300- 2500 K.

Figure S3: A more complete C_5H_9 PES by CBS-QB3.

Figure S4: Comparison of the rate constant for formation of cyclopentene in the reaction allyl + ethylene calculated in this study with literature values at 1 atm.

Table S4: High pressure limit rate constants for reactions shown in the C_5H_9 PES in Figure 7 in text (CBS-QB3 calculations vs. rate rule estimates).

Table S5: Rate constants at 1 atm for 500- 1800 K for the C_5H_9 PES, entering the surface from the C=CC• + C_2H_4 channel.

Figure S5: Simplified C_5H_{11} potential energy surface calculated at the CBS-QB3 level of theory, showing enthalpies in kcal/mol at 298 K. Numbers in parenthesis are based on rate rule estimates.

Table S6: High pressure limit rate constants for reactions shown in the C_5H_{11} PES in Figure S5 and Figure 10 in text (CBS-QB3 calculations vs. rate rule estimates). The solid lines are obtained from the CBS-QB3 high pressure rate constants, while the dashed lines are obtained from the estimated high pressure rate constants.

Figure S6: Predicted apparent rate constants at 1 atm for the C_5H_{11} PES, entering from the CCC• + C_2H_4 channel.

Table S7: Rate constants at 1 atm and 500- 1800 K for the C_5H_{11} PES, entering from the CCC• + C_2H_4 channel.

Figure S7: Simplified C₇H₁₁ potential energy surface calculated at the CBS-QB3 level of theory, showing the enthalpies in kcal/mol at 298 K.

Table S8: High pressure limit rate constants for reactions shown in the C_7H_{11} PES in Figure S7 (CBS-QB3 calculations vs. estimation).

Table S9: Rate constants at 1 atm and 500-1800 K for the C_7H_{11} PES in Figure S7, entering the surface from the allyl + C=CC=C.

Table S10: Rate constants for abstraction by resonant radicals from CH_4 and comparison between TST rate constants and the rate estimation rules.

Table S11: Reaction rate constants for abstraction by resonant radicals from propene and comparison between TST rate constants and the rate estimation rules.

Table S12: High pressure limit rate constants for the reactions shown in the C_6H_{11} PES in Figure 19 in the text.

Table S13: Rate constants at 1 atm and 500- 1800 K for the C_6H_{11} PES, entering the surface from the CC=CC• + C_2H_4 channel.

Table S1: Apparent temperature-and pressure-dependent rate constants for the recombination reactions of two stabilized radicals from 0.001-50 atm and 300-2500 K.

	Forward				Reverse				Note
Reactions	A (cm ³ /mol-s)	n	Ea (kcal/mol)	<i>k</i> (1000К) (ст ³ /mol-s)	A (s ⁻¹)	n	Ea (kcal/mol)	<i>k</i> (1000K) (s ⁻¹)	(Pressure in atm)
	1.12E+13	0	-0.31	1.31E+13	2.37E+15	0	59.54	2.27E+02	High P limit
	4.99E+52	-12.66	11.48	1.65E+12	1.35E+55	-12.69	71.38	2.83E+01	0.001
₹	1.64E+45	-10.18	9.69	3.70E+12	3.97E+47	-10.20	69.57	6.33E+01	0.01
C=CC• + C=CC• C=CCCC=C	7.11E+36	-7.47	7.39	6.75E+12	1.49E+39	-7.47	67.24	1.15E+02	0.1
	2.23E+28	-4.77	4.81	1.00E+13	3.94E+30	-4.75	64.63	1.68E+02	1
	7.47E+20	-2.42	2.39	1.21E+13	1.18E+23	-2.39	62.17	2.00E+02	10
	9.99E+16	-1.22	1.07	1.27E+13	1.86E+19	-1.22	60.86	2.07E+02	50
	1.12E+13	0	-0.31	1.31E+13	5.70E+14	0.00	59.89	4.56E+01	High P limit
	1.23E+55	-13.29	12.76	2.62E+12	8.92E+56	-13.34	73.05	9.25E+00	0.001
₹	1.17E+46	-10.37	10.31	5.16E+12	7.07E+47	-10.39	70.56	1.80E+01	0.01
C=CC• + CC=CC• C=CCC=CC	1.79E+36	-7.24	7.38	8.25E+12	8.87E+37	-7.24	67.59	2.86E+01	0.1
	5.63E+26	-4.25	4.34	1.09E+13	2.37E+28	-4.23	64.52	3.75E+01	1
	1.32E+19	-1.88	1.79	1.24E+13	6.12E+20	-1.87	61.96	4.15E+01	10
	4.58E+15	-0.81	0.60	1.27E+13	3.55E+17	-0.87	60.83	4.22E+01	50
	1.12E+13	0	-0.31	1.31E+13	2.24E+15	0.00	61.44	8.21E+01	High P limit
	1.98E+59	-14.66	13.90	1.89E+12	5.83E+61	-14.71	75.74	1.21E+01	0.001
↓	5.37E+50	-11.86	11.68	4.02E+12	1.34E+53	-11.88	73.49	2.53E+01	0.01
C=CC• + C=CC•C C=CCC(C)C=C	1.27E+41	-8.77	8.90	6.96E+12	2.61E+43	-8.77	70.67	4.38E+01	0.1
	1.81E+31	-5.66	5.82	9.90E+12	3.07E+33	-5.64	67.55	6.15E+01	1
	3.49E+22	-2.94	2.96	1.19E+13	5.47E+24	-2.91	64.66	7.28E+01	10
	8.84E+17	-1.52	1.39	1.25E+13	1.70E+20	-1.52	63.11	7.55E+01	50
	1.12E+13	0	-0.31	1.31E+13	1.15E+15	0	59.51	1.11E+02	High P limit
	1.15E+17	-1.24	1.08	1.25E+13	1.35E+19	-1.27	60.90	1.03E+02	50
₹	2.09E+21	-2.56	2.53	1.20E+13	1.80E+23	-2.54	62.32	9.89E+01	10
OD=OO+OC=OO+ ●OO=OO+ ●OO=OO	5.68E+29	-5.20	5.31	1.02E+13	5.08E+31	-5.18	65.12	8.47E+01	1
	3.27E+39	-8.28	8.37	7.19E+12	3.52E+41	-8.28	68.22	6.07E+01	0.1
	1.37E+49	-11.36	11.16	4.13E+12	1.81E+51	-11.39	71.05	3.56E+01	0.01
	5.11E+57	-14.16	13.38	1.96E+12	7.95E+59	-14.22	73.29	1.69E+01	0.001
	1.12E+13	0	-0.31	1.31E+13	7.99E+15	0.00	57.09	2.62E+03	High P limit
	4.76E+23	-3.30	3.31	1.15E+13	3.00E+26	-3.29	60.69	2.25E+03	50
≓ Z	7.29E+29	-5.24	5.32	9.87E+12	4.88E+32	-5.23	62.72	1.95E+03	10
C=CC•C+C=CC•C C=CC(C)C(C)C=C	4.02E+39	-8.32	8.34	6.76E+12	3.24E+42	-8.33	65.77	1.35E+03	1
	1.16E+49	-11.36	11.03	3.78E+12	1.14E+52	-11.40	68.51	7.62E+02	0.1
	2.18E+57	-14.08	13.10	1.71E+12	2.52E+60	-14.14	70.61	3.48E+02	0.01
	8.60E+63	-16.33	14.39	6.21E+11	1.12E+67	-16.41	71.91	1.27E+02	0.001

Note: The forward rate constants are based on literature measurements as discussed in the text; the reverse rate constants are calculated using the principle of microscopic reversibility, using thermochemical parameters for each reactant.

Figure S1: Pathways leading to formation of aromatic species after recombination of methyl-allyl and allyl radicals.

Figure S2: Simplified C_6H_9 PES depicting the energetics of the reaction sequence after hydrogen abstraction from the initially-formed linear adduct in the recombination of two allyl radicals. (The numbers are enthalpies (kcal/mol) at 298K based on CBS-QB3 calculations; the numbers in parenthesis are based on rate rule estimates).

Table S2: High pressure limit rate constants for reactions shown in the C_6H_9 PES in Figure S2 and Figure 5 in text (based on CBS-QB3 calculations).

		Forward		Reverse			
Reactions	A (s ⁻¹)	Ea (kcal/mol)	<i>k</i> (1000К) (s ⁻¹)	A (s ⁻¹ or cm³/mol-s)	Ea (kcal/mol)	<i>k</i> (1000K) (s ⁻¹ or cm ³ /mol-s)	
C=CCC•C=C <=> 2	1.84E+12	31.3	2.68E+05	1.32E+13	44.8	2.12E+03	
C=CCC•C=C <=> 3	1.10E+11	21.1	2.67E+06	5.03E+13	28.8	2.60E+07	
$C=CCC \bullet C=C <=> 4$	4.29E+11	20.9	1.14E+07	4.68E+13	23.4	3.52E+08	
C=CCC•C=C <=> III	1.71E+15	45.1	2.35E+05	1.38E+13	2.31	4.30E+12	
2 <=> 5	2.45E+12	36.6	2.40E+04	5.30E+13	43.2	1.88E+04	
3 <=> VI	2.01E+14	35.0	4.40E+06	4.15E+14	3.71	6.41E+13	
3 <=> VII	8.94E+13	34.6	2.44E+06	1.32E+14	3.33	2.47E+13	
4 <=> 5	5.84E+12	30.5	1.24E+06	8.28E+12	48.1	2.47E+02	
4 <=>	2.85E+13	35.9	4.01E+05	2.47E+13	4.94	2.05E+12	
5 <=> l	9.89E+14	38.9	3.11E+06	1.50E+13	6.83	4.82E+11	
5 <=> IV	4.95E+12	46.4	3.57E+02	2.60E+13	2.16	8.76E+12	
3 <=> V	1.54E+13	43.0	5.98E+03	2.60E+13	2.16	8.76E+12	

Table S3: Rate constants at 1 atm for the reactions shown in the C_6H_9 PES in Figure S2 and Figure 5 in text for the temperature range 300- 2500 K.

Rea	octions		A (s⁻¹)	n	E (kcal/mol)	k (1000K) (s ⁻¹)		Reacti	ions	A (s⁻¹)	n	E (kcal/mol)	k (1000K) (s ⁻¹)
C=CCC•C=C	<=>	III	2.13E+37	-7.08	51.56	6.65E+04	3	<=>	Ш	8.11E+48	-10.32	65.18	4.88E+03
C=CCC•C=C	<=>	3	3.90E+41	-9.86	29.57	3.46E+05	3	<=>	VI	8.03E+35	-7.18	40.16	3.86E+05
C=CCC•C=C	<=>	VI	2.90E+41	-9.04	41.53	1.82E+05	3	<=>	VII	8.58E+35	-7.28	39.95	2.24E+05
C=CCC•C=C	<=>	VII	1.70E+41	-9.06	41.32	1.00E+05	3	<=>	4	1.08E+57	-13.93	48.56	4.28E+04
C=CCC•C=C	<=>	4	5.84E+39	-9.31	27.77	6.02E+05	3	<=>	П	1.38E+52	-12.09	59.40	7.43E+02
C=CCC•C=C	<=>	Ш	3.99E+36	-7.78	42.68	8.25E+03	3	<=>	5	5.29E+61	-15.54	57.95	2.70E+02
C=CCC•C=C	<=>	2	2.94E+36	-7.63	38.84	1.24E+05	3	<=>	I.	8.14E+55	-12.90	62.29	3.77E+03
C=CCC•C=C	<=>	5	1.57E+45	-11.02	39.86	2.66E+03	3	<=>	V	1.24E+51	-12.15	62.29	1.03E+01
C=CCC•C=C	<=>	I	2.12E+39	-8.29	45.03	4.09E+04	3	<=>	IV	1.45E+48	-11.54	62.40	7.76E-01
C=CCC•C=C	<=>	V	6.95E+34	-7.62	45.35	1.15E+02	4	<=>	Ш	2.41E+43	-8.75	58.26	2.45E+04
C=CCC•C=C	<=>	IV	1.97E+32	-7.11	45.80	8.84E+00	4	<=>	VI	4.92E+51	-11.86	51.23	8.04E+04
2	<=>	III	1.88E+43	-8.47	73.41	6.47E+01	4	<=>	VII	4.19E+51	-11.93	51.14	4.45E+04
2	<=>	3	1.48E+49	-11.64	60.42	1.10E+01	4	<=>	Ш	3.67E+25	-4.50	36.91	9.86E+03
2	<=>	VI	9.97E+49	-11.10	68.66	4.94E+01	4	<=>	5	4.29E+46	-11.49	37.64	8.60E+03
2	<=>	VII	7.28E+49	-11.15	68.59	2.65E+01	4	<=>	I	1.36E+33	-6.58	40.17	4.15E+04
2	<=>	4	2.07E+43	-9.87	57.36	1.45E+01	4	<=>	V	5.57E+27	-5.64	40.36	1.01E+02
2	<=>	Ш	1.24E+43	-9.27	67.63	3.21E+00	4	<=>	IV	5.17E+24	-4.98	40.89	6.97E+00
2	<=>	5	1.21E+43	-9.98	44.90	2.14E+03	5	<=>	Ш	3.89E+41	-8.44	77.70	1.96E-01
2	<=>	T	8.69E+32	-5.99	49.91	1.13E+04	5	<=>	VI	5.44E+54	-12.92	75.35	3.20E-01
2	<=>	V	4.88E+28	-5.38	50.83	2.81E+01	5	<=>	VII	5.22E+54	-13.00	75.32	1.74E-01
2	<=>	IV	4.98E+26	-5.01	52.02	1.99E+00	5	<=>	П	7.53E+32	-6.90	62.65	3.06E-02
							5	<=>	I	6.50E+42	-8.96	46.77	5.03E+05
							5	<=>	V	7.82E+39	-8.70	50.15	6.53E+02
							5	<=>	IV	1.24E+38	-8.37	52.70	2.79E+01

Figure S3: A more complete C_5H_9 PES by CBS-QB3.

Figure S4: Comparison of the rate constant for formation of cyclopentene + H from the reaction allyl + ethylene calculated in this study with literature values at 1 atm.

	Fo	rward reacti	on		Revers	se reaction		
		Rate c	onstants fro	om CBS-QB	3 calcu	lation		Note
Rea <u>et</u> ions	A (s ⁻¹ or cm ³ /mol-s)	Ea (kcal/mol)	k(1000K) (s ⁻¹ cm ³ /mol-s)	A (s ⁻¹ or cm ³ /mol-s)	n	Ea (kcal/mol)	k(1000K) (s ⁻¹ cm ³ /mol-s)	
ı ₹1	2.13E+12	14.7	1.28E+09	1.48E+13	0	20.7	4.44E+08	
1 [₹] II	1.44E+13	36.9	1.22E+05	9.74E+13	0	3.66	1.54E+13	
1	7.67E+10	16.4	1.99E+07	3.28E+13	0	14.3	2.46E+10	
4 [₹] VI	3.00E+14	38.7	1.03E+06	1.30E+13	0	1.6	5.93E+12	
1 [₹] 5	7.69E+10	15.4	3.30E+07	1.70E+14	0	34.5	4.80E+06	
5 [₹] IV	4.41E+14	36.1	5.71E+06	1.78E+14	0	2.18	5.93E+13	All rate constants are based on CBS-QB3
1 ₹ 3	1.62E+12	32.2	1.50E+05	1.27E+13	0	49.6	1.84E+02	calculation
3 ≓ III	1.62E+14	46.6	1.03E+04	1.02E+14	0	3.02	2.23E+13	
3 ≈ v	6.16E+14	38.0	2.95E+06	5.82E+12	0	5.44	3.76E+11	
1 [₹] 2	9.01E+12	38.1	4.26E+04	1.10E+13	0	41.3	1.01E+04	
2 [₹] II	2.38E+13	39.2	6.52E+04	2.60E+13	0	1.56	1.19E+13	
2	1.45E+13	33.9	5.72E+05	5.84E+13	0	4.39	6.39E+12	
		Rate cons	tants based	l on estima	tion tee	chniques		
∣ ≓1	2.00E+12	13.1	2.80E+09	1.09E+13	0	20.3	3.90E+08	Estimated A-factor, Ea from CBS-QB3 calculation of Saeys et al. (2004)
1 ≓ II	1.95E+12	36.7	1.80E+04	1.26E+12	0.29	2.77	2.36E+12	Rate rules for H + larger olefin
1≓ 4	4.21E+10	12.9	6.35E+07	8.52E+12	0.00	8.98	9.26E+10	4-member ring, Estrain=5, Eaddion analogy to $C_2H_5+C_3H_{6_}CCC(C)C$. at 1000 K
4 VI	3.71E+13	35.1	7.73E+05	1.26E+12	0.29	2.77	2.36E+12	Rate rules for H + larger olefin
1 _₹ 5	4.21E+10	15.0	2.21E+07	3.37E+14	0	33.4	1.65E+07	5-member ring, E_{strain} =6, E_{addion} analogy to $C_2H_5+C_3H_{6}_2-C_5H_{11}$ at 1000 K
5 IV	1.26E+14	36.5	1.31E+06	1.26E+12	0.29	2.77	2.36E+12	Rate rules for H + larger olefin
1 _₹ 3	2.99E+11	32.9	1.91E+04	3.37E+14	0	48.4	8.99E+03	1,3-H transfer, E_{strain} =22.8, E_{abs} analogy to $C_2H_5+C_3H_6_C_2H_6+aC_3H_5$ at 1000 K
3 ≓ III	9.70E+13	45.0	1.42E+04	1.26E+12	0.29	2.77	2.36E+12	Rate rules for H + larger olefin
3 V	1.25E+15	36.8	1.14E+07	5.71E+12	0	5.49	3.61E+11	From CBS-QB3 calculation (Saeys at el.)
$1 \xrightarrow{2} 2$	1.96E+13	38.7	6.74E+04	1.95E+13	0	41.8	1.41E+04	1,2-H transfer, E_{strain} =24.4, E_{abs} analogy to $C_2H_5+C_3H_8$ _ $C_2H_6+iC_3H_7$ at 1000 K
2 [₹] II	4.01E+12	39.6	8.57E+03	2.52E+12	0.29	2.77	4.72E+12	Rate rules for H + larger olefin
2 111	2.56E+12	32.6	1.92E+05	1.26E+12	0.29	2.77	2.36E+12	Rate rules for H + larger olefin
Note: The bold blue are	the initially est	imated numbers	; the reverse ra	te constants a	re calcula	ted from the th	ermodynamic	data.

Table S4: High pressure limit rate constants for reactions shown in the C_5H_9 PES in Figure 7 in text (CBS-QB3 calculations vs. rate rule estimates).

	Reaction	IS	A (s⁻¹ or cm³/mol-s)	n	Ea (kcal/mol)	<i>k</i> (1000K) (s ⁻¹ or cm ³ /mol-s)
I	<=>	(3)	1.41E+48	-11.83	37.87	2.37E+04
1	<=>	Ш	4.23E+28	-4.89	38.25	3.91E+05
1	<=>	IV	6.90E+19	-2.68	38.02	3.09E+03
1	<=>	(1)	5.30E+26	-5.02	16.49	1.13E+08
1	<=>	V	6.41E+16	-1.31	33.58	3.44E+05
1	<=>	(2)	9.45E+42	-9.61	43.74	3.89E+04
1	<=>	IV	1.89E+37	-7.09	51.61	5.30E+04
1	<=>	V	1.40E+34	-6.23	52.37	1.02E+04
1	<=>	(5)	8.31E+66	-17.33	36.70	8.19E+06
1	<=>	Ш	1.13E+42	-9.01	34.21	3.61E+07
1	<=>	(4)	6.65E+24	-5.29	17.97	1.03E+05
1	<=>	VI	4.14E+12	-0.55	34.50	2.71E+03
(3)	<=>	Ш	2.32E+56	-12.97	53.12	6.92E+05
(3)	<=>	IV	2.20E+50	-11.61	57.46	8.73E+02
(3)	<=>	(1)	8.00E+41	-10.23	52.66	4.92E-01
(3)	<=>	V	2.75E+29	-6.31	59.82	2.75E-03
(3)	<=>	(2)	5.99E+50	-13.09	68.21	3.94E-04
(3)	<=>	IV	6.44E+42	-10.06	73.56	3.53E-04
(3)	<=>	V	6.57E+37	-8.68	73.13	5.93E-05
(3)	<=>	(5)	1.01E+68	-18.50	64.12	3.04E-02
(3)	<=>	Ш	6.54E+58	-14.92	66.65	3.03E-01
(3)	<=>	(4)	1.46E+39	-10.31	52.79	5.04E-04
(3)	<=>	VI	3.94E+22	-4.81	58.95	1.92E-05
(1)	<=>	Ш	6.90E+22	-3.90	35.53	2.35E+03
(1)	<=>	IV	6.11E+11	-1.07	34.28	1.20E+01
(1)	<=>	V	6.57E+07	0.57	29.14	1.44E+03
(1)	<=>	(2)	2.61E+29	-6.22	38.40	2.29E+02
(1)	<=>	IV	4.50E+23	-3.82	45.92	1.40E+02
(1)	<=>	V	6.21E+19	-2.77	46.37	2.19E+01
(1)	<=>	(5)	3.83E+60	-15.73	31.93	2.51E+06
(1)	<=>	П	1.47E+46	-10.81	34.50	1.56E+06
(1)	<=>	(4)	6.82E+28	-7.01	15.17	3.00E+04
(1)	<=>	VI	8.41E+02	1.53	29.93	9.09E+00
(2)	<=>	Ш	6.09E+38	-8.66	56.63	2.64E+00
(2)	<=>	IV	2.28E+30	-6.62	55.42	2.42E-02
(2)	<=>	V	1.17E+30	-6.01	53.07	2.69E+00
(2)	<=>	IV	2.49E+40	-8.41	44.35	3.00E+05
(2)	<=>	V	3.41E+41	-8.77	49.43	2.56E+04
(2)	<=>	(5)	4.88E+50	-13.14	49.95	2.19E+00
(2)	<=>	П	1.29E+48	-11.34	55.72	8.18E+01
(2)	<=>	(4)	3.93E+26	-6.20	41.93	6.69E-02
(2)	<=>	VI	7.57E+24	-5.00	52.80	2.21E-02

Table S5: Rate constants at 1 atm for 500- 1800 K for the C_5H_9 PES, entering from the C=CC•+ C_2H_4 .

(5)	<=>	Ш	1.08E+59	-14.24	69.72	1.21E+01
(5)	<=>	IV	8.89E+45	-10.87	67.08	4.71E-02
(5)	<=>	V	8.96E+41	-9.21	61.93	5.91E+00
(5)	<=>	IV	2.26E+52	-12.04	76.05	4.10E-01
(5)	<=>	V	6.14E+47	-10.80	76.09	5.59E-02
(5)	<=>	П	6.88E+56	-13.26	50.66	9.34E+05
(5)	<=>	(4)	2.15E+68	-17.82	56.85	2.79E+02
(5)	<=>	VI	4.92E+35	-7.89	61.87	3.19E-02
(4)	<=>	Ш	1.50E+26	-4.89	36.84	2.89E+03
(4)	<=>	IV	1.34E+15	-2.05	35.63	1.54E+01
(4)	<=>	V	1.75E+11	-0.43	30.53	1.84E+03
(4)	<=>	IV	4.38E+27	-4.99	47.54	1.86E+02
(4)	<=>	V	5.59E+23	-3.93	47.99	2.97E+01
(4)	<=>	П	3.05E+50	-12.10	36.39	1.74E+06
(4)	<=>	VI	1.33E+02	2.31	29.09	4.78E+02

Figure S5: Simplified C_5H_{11} potential energy surface calculated at the CBS-QB3 level of theory, showing enthalpies in kcal/mol at 298 K. Numbers in parenthesis are based on rate rule estimates.

Table S6: High pressure limit rate constants for reactions shown in the C_5H_{11} PES in Figure S5 and Figure 10 in text (CBS-QB3 calculations vs. rate rule estimates). The solid lines are obtained from the CBS-QB3 high pressure rate constants, while the dashed lines are obtained from the estimated high pressure rate constants.

	Forward reaction Reverse reaction						
Reactions		Rat	e constants by C	BS-QB3 calcul	ation		- Note
	A (s ⁻¹ or cm ³ /mol-s)	Ea (kcal/mol)	<i>k</i> (1000K) (s ⁻¹ or cm ³ /mol-s)	A (s ⁻¹ or cm ³ /mol-s)	Ea (kcal/mol)	<i>k</i> (1000K) (s ⁻¹ or cm ³ /mol-s)	
ı [₹] 1	1.32E+12	8.52	1.81E+10	1.96E+13	28.5	1.13E+07	
1 II	2.03E+13	36.1	2.57E+05	1.20E+14	4.35	1.34E+13	
1 2 (Duplicate reaction)	3.27E+10	20.8	9.22E+05	1.68E+11	24.6	6.87E+05	
1 2 (Duplicate reaction)	1.79E+12	37.3	1.25E+04	9.21E+12	41.1	9.36E+03	
1 [₹] 3	4.77E+11	36.7	4.40E+03	1.84E+12	40.3	2.85E+03	CRS-OR2 calculation
2 [₹] IV	4.82E+13	28.9	2.28E+07	4.74E+12	8.27	7.39E+10	
2 [₹] II	1.56E+14	38.6	5.78E+05	1.80E+14	2.96	4.05E+13	
2 ≓III	4.29E+13	36.8	3.89E+05	8.80E+13	3.86	1.26E+13	
2 [₹] 3	5.50E+12	39.2	1.45E+04	4.14E+12	39.0	1.26E+04	
3 ⊄III	4.06E+13	36.2	4.93E+05	1.10E+14	3.56	1.83E+13	
3 V	1.43E+14	30.9	2.46E+07	6.08E+12	8.99	6.57E+10	
			Rate constants f	from estimatio	n		
ı [₹] 1	2.11E+12	8.99	2.29E+10	2.12E+13	28.6	1.18E+07	From CBS-QB3 calculation
1 II	1.58E+13	36.0	2.11E+05	1.16E+13	3.23	2.28E+12	H inner addition to C=CC by Curran 2006
1 2 (Duplicate reaction)	2.99E+11	19.1	1.99E+07	2.86E+11	22.1	4.17E+06	1,4-H transfer, E_{strain} =5.8, E_{abs} analogy to $CH_3+C_2H_6_CH_4+C_2H_5$ at 1000 K
1 2 (Duplicate rea ct ion)	1.96E+13	37.7	1.12E+05	1.87E+13	40.7	2.33E+04	1,2-H transfer, E_{strain} =24.4, E_{abs} analogy to $CH_3+C_2H_6$ _ $CH_4+C_2H_5$ at 1000 K
1≓3	2.42E+12	36.1	3.09E+04	4.60E+12	39.1	1.28E+04	1,3-H transfer, E_{strain} =22.8, E_{abs} analogy to $CH_3+C_2H_{6-}CH_4+C_2H_5$ at 1000 K
2 [₹] IV	5.33E+13	29.0	2.39E+07	7.38E+12	8.71	9.20E+10	From CBS-QB3 calculation
2 [₹] II	2.55E+13	37.6	1.50E+05	1.96E+13	1.84	7.77E+12	H inner addition to C=CC by Curran 2006
2 ≓Ⅲ	1.51E+13	39.0	4.40E+04	1.16E+13	3.23	2.28E+12	H inner addition to C=CC by Curran 2006
2≓3	1.96E+13	37.7	1.12E+05	3.91E+13	37.7	2.23E+05	1,2-H transfer, E_{strain} =24.4, E_{abs} analogy to CH ₃ +C ₂ H ₆ _CH ₄ +C ₂ H ₅ at 1000 K
3 ≓Ш	3.01E+13	39.0	8.78E+04	1.16E+13	3.23	2.28E+12	H inner addition to C=CC by Curran 2006
3 V	1.79E+14	30.8	3.24E+07	4.95E+12	8.56	6.64E+10	From CBS-QB3 calculation
Note: The bold blue	are the initially	estimated num	bers; reverse rat	e constants ar	e calculated fror	n the thermody	namic data.

Figure S6: Predicted apparent rate constants at 1 atm for the C_5H_{11} PES, entering from the CCC • + C_2H_4 channel.

	Reactions		A (s ⁻¹ or cm ³ /mol-s)	n	Ea (kcal/mol)	<i>k</i> (1000К) (s ⁻¹ or cm ³ /mol-s)	Note
1	<=>	1	2.69E+24	-4.36	9.48	1.92E+09	
I.	<=>	П	4.82E+20	-2.41	25.3	8.50E+07	Duplicate reaction
1	<=>	2	7.10E+54	-13.2	27.7	1.78E+09	Duplicate reaction
1	<=>	П	8.77E+39	-7.94	34.2	4.42E+08	Duplicate reaction
1	<=>	III	4.77E+41	-8.58	34.3	2.79E+08	Duplicate reaction
1	<=>	IV	1.31E+52	-11.4	35.5	1.11E+10	Duplicate reaction
1	<=>	2	1.13E+32	-7.12	25.3	1.42E+05	Duplicate reaction
1	<=>	П	2.85E+22	-3.24	33.4	2.78E+05	Duplicate reaction
1	<=>	Ш	3.91E+23	-3.70	33.4	1.57E+05	Duplicate reaction
1	<=>	IV	3.14E+31	-5.83	33.9	3.83E+06	Duplicate reaction
1	<=>	3	1.79E+54	-13.6	35.6	5.50E+05	Duplicate reaction
1	<=>	Ш	3.80E+36	-7.55	38.2	3.78E+05	Duplicate reaction
1	<=>	V	1.69E+44	-9.51	39.5	1.20E+07	
1	<=>	Ш	1.10E+17	-1.95	32.4	1.28E+04	Duplicate reaction
1	<=>	2	9.63E+52	-12.8	34.1	1.11E+07	Duplicate reaction
1	<=>	-	4.23F+41	-8.92	45.2	9 87F+04	Duplicate reaction
1	<=>		1.43F+44	-9.77	45.5	7 70F+04	Duplicate reaction
1	<=>	IV.	2 95E+56	-13.1	45.5	7.465+06	Duplicate reaction
1	<=>	2	2.33E+30	-8 13	37.3	6 44E+01	Duplicate reaction
1	<->	1	2.17E+34	-2.36	37.5 A1 7	1 745+01	Duplicate reaction
1	<->		2.04L+17	-2.50	41.7	1.115+01	Duplicate reaction
1	<->	111	2.605+20	-2.35	41.9	4.515.02	Duplicate reaction
1	<=>	10	5.00E+29	-5.60	45.4	4.512+02	Duplicate reaction
1	<->	5	1.552+56	-14.9	49.0	4.012+02	Duplicate reaction
1	<=>		2.19E+38	-8.57	50.3	4.32E+01	Duplicate reaction
1	<=>	v	6.84E+47	-11.0	52.6	2.00E+03	Duplicate reaction
2	<=>		6.53E+41	-9.60	50.8	8.25E+01	Duplicate reaction
2	<=>	11	8.70E+33	-6.68	42.2	4.74E+04	Duplicate reaction
2	<=>		2.74E+35	-7.25	41.6	3.89E+04	Duplicate reaction
2	<=>	IV	1.94E+42	-9.07	38.2	5.08E+06	Duplicate reaction
2	<=>	2	3.14E+53	-14.0	53.6	5.25E-01	Duplicate reaction
2	<=>	Ш	6.64E+33	-7.60	54.9	1.06E-01	Duplicate reaction
2	<=>	III	1.34E+36	-8.38	55.5	6.98E-02	Duplicate reaction
2	<=>	IV	2.20E+48	-11.7	58.4	3.13E+00	Duplicate reaction
2	<=>	3	4.09E+54	-13.8	49.2	2.18E+02	Duplicate reaction
2	<=>	III	4.74E+37	-8.35	52.2	1.69E+01	Duplicate reaction
2	<=>	V	4.73E+46	-10.6	54.0	8.31E+02	Duplicate reaction
2	<=>	Ш	2.07E+24	-4.47	48.7	1.77E+00	Duplicate reaction
2	<=>	П	1.56E+42	-9.57	57.0	1.05E+01	Duplicate reaction
2	<=>	Ш	3.85E+44	-10.4	57.7	7.05E+00	Duplicate reaction
2	<=>	IV	1.01E+57	-13.7	60.7	3.37E+02	Duplicate reaction
2	<=>	П	7.64E+36	-7.59	43.3	4.50E+04	Duplicate reaction
2	<=>	III	2.27E+38	-8.15	42.8	3.69E+04	Duplicate reaction
2	<=>	IV	1.06E+45	-9.92	39.3	4.85E+06	Duplicate reaction
2	<=>	3	1.63E+57	-14.6	50.2	2.09E+02	Duplicate reaction
2	<=>	Ш	4.80E+40	-9.27	53.3	1.60E+01	Duplicate reaction
2	<=>	V	4.36E+49	-11.6	55.1	7.92E+02	Duplicate reaction
3	<=>	П	3.84E+28	-5.98	50.1	5.05E-01	Duplicate reaction
3	<=>	Ш	3.52E+40	-9.16	53.8	2.00E+01	Duplicate reaction
3	<=>	Ш	8.53E+42	-9.97	54.3	1.38E+01	Duplicate reaction
3	<=>	IV	2.01E+55	-13.3	57.0	7.57E+02	Duplicate reaction
3	<=>	Ш	9.43E+39	-9.02	53.5	1.72E+01	Duplicate reaction
3	<=>	Ш	2.38E+42	-9.83	54.0	1.18E+01	Duplicate reaction
3	<=>	IV	6.99E+54	-13.2	56.7	6.57E+02	Duplicate reaction
3	<=>	Ш	6.32E+43	-9.79	44.6	4.84E+04	Duplicate reaction
3	<=>	V	1.18F+49	-11.1	42.5	4.32F+06	

Table S7: Rate constants at 1 atm and 500- 1800 K for the C_5H_{11} PES, from the CCC • + C_2H_4 channel.

Figure S7: Simplified C_7H_{11} potential energy surface calculated at the CBS-QB3 level of theory, showing the enthalpies in kcal/mol at 298 K. (Note that this is the same as Figure 12 in the text, however the numbering of the product channels differs. This numbering corresponds to Tables S8 and S9 below.)

		Forward		Reverse			
Reactions	A (s ⁻¹ or cm ³ /mol-s)		<i>k</i> (1000K) (s ⁻¹ or cm ³ /mol-s)	A (s ⁻¹ or cm³/mol-s)	Ea (kcal/mol)	<i>k</i> (1000K) (s ⁻¹ or cm ³ /mol-s)	
C=CC• + C=CC=C <=> 1	1.76E+12	11.06	6.71E+09	2.74E+13	28.11	1.95E+07	
1 <=> 2	5.41E+11	24.01	3.03E+06	1.13E+12	26.40	1.91E+06	
2 <=> 3	1.04E+11	21.25	2.34E+06	7.54E+13	28.46	4.51E+07	
3 <=>	5.44E+14	30.25	1.32E+08	1.32E+13	9.89	9.08E+10	
2 <=> 4	1.77E+12	31.15	2.73E+05	1.41E+13	44.97	2.07E+03	
4 <=> 5	1.78E+12	35.63	2.88E+04	5.08E+13	41.10	5.23E+04	
5 <=> IV	1.95E+15	40.00	3.49E+06	1.52E+13	6.68	5.25E+11	
1 <=> 6	3.77E+12	35.95	5.18E+04	1.34E+13	38.71	4.60E+04	
6 <=> 7	5.25E+12	31.69	6.17E+05	1.38E+13	41.91	9.45E+03	
7 <=> 8	2.33E+12	36.95	1.94E+04	5.64E+13	43.81	1.48E+04	
8 <=> VII	3.02E+14	36.99	2.46E+06	2.15E+13	6.78	7.07E+11	
6 <=> 9	1.33E+11	22.06	2.00E+06	5.49E+13	28.72	2.88E+07	
9 <=> VIII	8.11E+13	34.83	1.96E+06	4.34E+13	3.12	9.04E+12	
9 <=> IX	8.14E+13	34.79	2.01E+06	6.90E+13	3.28	1.32E+13	
1 <=> 10	7.75E+09	23.17	6.65E+04	1.68E+13	27.12	1.98E+07	
10 <=> II	2.44E+14	38.23	1.06E+06	8.00E+13	3.50	1.37E+13	
1 <=> 11	4.94E+10	23.49	3.61E+05	1.92E+13	26.72	2.75E+07	
11 <=> V	2.51E+14	36.80	2.25E+06	1.25E+14	3.42	2.23E+13	
11 <=> VI	4.10E+14	36.60	4.07E+06	1.57E+14	2.90	3.65E+13	
1 <=> 12	1.22E+11	20.32	4.39E+06	1.67E+14	32.59	1.25E+07	
12 <=>	1.72E+14	39.96	3.16E+05	2.06E+14	3.92	2.85E+13	

Table S8: High pressure limit rate constants for reactions shown in the C_7H_{11} PES in Figure S7 (CBS-QB3 calculations).

Re	actions		A (s ⁻¹ or cm ³ /mol-s)	n	Ea (kcal/mol)	<i>k</i> (1000K) (s ⁻¹ or cm ³ /mol-s)
C=CC• + C=CC=C	<=>	1	1.47E+31	-6,00	17.26	2.51E+09
C=CC• + C=CC=C	<=>	2	1.80E+52	-11.94	36.63	2.70E+08
C=CC• + C=CC=C	<=>	6	2.23E+44	-9.59	39.77	7.51E+06
C=CC● + C=CC=C	<=>	10	1.51E+57	-14.34	36.56	1.51E+06
C=CC● + C=CC=C	<=>	Ш	3.04E+54	-12.68	48.27	7.86E+05
C=CC• + C=CC=C	<=>	11	2.64E+60	-15.13	37.48	7.03E+06
C=CC• + C=CC=C	<=>	VI	5.01E+59	-13.99	49.38	8.37E+06
C=CC• + C=CC=C	<=>	V	1.69E+59	-13.92	49.36	4.66E+06
C=CC• + C=CC=C	<=>	12	1.08E+63	-15.83	36.03	4.62E+07
C=CC• + C=CC=C	<=>	I	3.76E+57	-13.39	46.23	2.00E+07
C=CC•+C=CC=C	<=>	3	1.42E+74	-19.52	46.69	2.36E+05
C=CC• + C=CC=C	<=>	Ш	4.93E+69	-16.77	53.16	5.82E+07
C=CC• + C=CC=C	<=>	4	4.80E+69	-16.82	55.12	1.47E+07
C=CC• + C=CC=C	<=>	5	1.07E+82	-21.16	63.83	3.88E+04
C=CC•+C=CC=C	<=>	IV	6.25E+81	-19.81	72.57	3.12E+06
C=CC● + C=CC=C	<=>	7	9.41E+66	-15.90	58.89	2.47E+06
C=CC• + C=CC=C	<=>	9	1.39E+59	-14.58	47.74	9.26E+04
C=CC● + C=CC=C	<=>	IX	1.91E+64	-15.20	59.53	4.56E+05
C=CC● + C=CC=C	<=>	VIII	1.71E+64	-15.19	59.53	4.48E+05
C=CC• + C=CC=C	<=>	8	1.07E+73	-18.23	65.71	9.45E+03
C=CC● + C=CC=C	<=>	VII	2.23E+79	-18.95	76.82	5.12E+05
1	<=>	2	1.27E+37	-7.93	33.09	1.17E+06
1	<=>	6	1.09E+34	-6.97	41.90	9.42E+03
1	<=>	10	1.59E+44	-10.82	34.78	1.36E+04
1	<=>	Ш	5.42E+49	-11.69	53.68	8.32E+02
1	<=>	11	1.92E+47	-11.53	35.98	6.92E+04
1	<=>	VI	1.63E+55	-13.05	55.11	1.02E+04
1	<=>	V	5.56E+54	-12.98	55.11	5.57E+03
1	<=>	12	1.26E+52	-12.87	34.61	8.14E+05
1	<=>	I	3.38E+52	-12.31	50.57	3.42E+04
1	<=>	3	5.29E+66	-17.68	48.69	1.06E+03
1	<=>	III	1.48E+62	-15.00	55.92	8.82E+04
1	<=>	4	2.65E+56	-13.32	56.16	1.49E+04
1	<=>	5	1.15E+74	-19.13	68.97	3.80E+01
1	<=>	IV	3.41E+72	-17.52	77.27	1.20E+03
1	<=>	7	9.07E+52	-12.19	60.87	1.24E+03
1	<=>	9	4.54E+53	-13.27	53.55	1.34E+02
1	<=>	IX	7.87E+56	-13.48	64.58	2.17E+02
1	<=>	VIII	6.97E+56	-13.47	64.57	2.13E+02
1	<=>	8	1.61E+62	-15.41	70.35	3.97E+00
1	<=>	VII	2.05E+67	-15.86	80.91	1.07E+02

Table S9: Rate constants from 500- 1800 K at 1 atm for the C_7H_{11} PES (Figure S7), from allyl + C=CC=C.

2	<=>	6	7.74E+51	-11.96	59.69	8.92E+02
2	<=>	10	3.80E+64	-16.54	56.66	3.67E+02
2	<=>	П	3.16E+64	-15.81	69.32	8.44E+01
2	<=>	11	3.50E+67	-17.24	57.56	1.77E+03
2	<=>	VI	6.70E+69	-17.13	70.63	9.71E+02
2	<=>	V	2.20E+69	-17.06	70.60	5.37E+02
2	<=>	12	3.54E+71	-18.34	56.68	1.35E+04
2	<=>	I	2.38E+68	-16.72	67.69	2.64E+03
2	<=>	3	1.74E+50	-12.89	31.03	5.96E+04
2	<=>	Ш	1.46E+37	-7.66	36.76	1.41E+06
2	<=>	4	4.12E+28	-5.11	37.07	1.54E+05
2	<=>	5	3.49E+53	-12.95	55.55	3.54E+02
2	<=>	IV	8.14E+53	-11.83	66.26	8.72E+03
2	<=>	7	6.03E+70	-17.21	77.10	1.90E+02
2	<=>	9	3.31E+67	-17.16	68.46	1.20E+01
2	<=>	IX	7.15E+71	-17.67	79.26	3.27E+01
2	<=>	VIII	6.38E+71	-17.66	79.25	3.21E+01
2	<=>	8	1.00E+77	-19.59	84.19	6.60E-01
2	<=>	VII	7.77E+81	-19.99	94.11	2.25E+01
3	<=>	1	4.81E+73	-18.54	63.88	1.22E+04
3	<=>	2	1.87E+62	-15.33	44.41	3.79E+06
3	<=>	6	2.09E+75	-18.96	80.92	5.60E+00
3	<=>	10	4.68E+92	-24.80	80.65	4.42E+00
3	<=>	П	1.29E+89	-23.16	91.20	5.01E-01
3	<=>	11	1.84E+95	-25.37	81.45	2.20E+01
3	<=>	VI	3.46E+94	-24.50	92.65	6.09E+00
3	<=>	V	1.07E+94	-24.42	92.61	3.35E+00
3	<=>	I	1.24E+94	-24.38	90.08	1.86E+01
3	<=>	Ш	2.61E+57	-13.67	43.27	8.86E+06
3	<=>	4	1.37E+59	-14.15	61.69	1.56E+03
3	<=>	5	2.38E+80	-20.91	78.48	3.08E+00
3	<=>	IV	7.97E+76	-18.74	86.99	4.43E+01
3	<=>	7	3.05E+91	-23.43	97.22	8.41E-01
3	<=>	9	4.20E+91	-24.33	90.31	7.87E-02
3	<=>	IX	5.52E+94	-24.54	100.38	1.44E-01
3	<=>	VIII	4.90E+94	-24.53	100.37	1.42E-01
3	<=>	8	1.57E+98	-25.94	104.85	2.75E-03

4	<=>	1	2.12E+57	-13.22	72.41	7.05E+01
4	<=>	2	2.48E+29	-5.06	50.91	1.20E+03
4	<=>	6	1.35E+69	-16.58	90.24	4.45E-01
4	<=>	10	3.04E+77	-19.94	86.58	5.29E-02
4	<=>	II	4.20E+79	-19.81	98.39	4.66E-02
4	<=>	11	5.01E+79	-20.44	86.94	2.31E-01
4	<=>	VI	2.45E+83	-20.70	98.83	4.85E-01
4	<=>	V	9.03E+82	-20.64	98.81	2.72E-01
4	<=>	12	7.21E+80	-20.71	85.19	1.30E+00
4	<=>	I	1.17E+82	-20.30	96.57	1.10E+00
4	<=>	3	1.75E+55	-13.76	63.75	1.08E+00
4	<=>	111	1.06E+54	-11.96	72.74	1.79E+02
4	<=>	5	1.96E+52	-12.52	49.87	6.52E+03
4	<=>	IV	2.99E+52	-11.44	63.78	1.65E+04
4	<=>	7	1.47E+92	-23.07	108.53	1.71E-01
4	<=>	9	2.33E+80	-20.54	96.12	5.24E-03
4	<=>	IX	1.65E+91	-22.91	109.75	2.98E-02
4	<=>	VIII	1.52E+91	-22.91	109.75	2.93E-02
4	<=>	8	8.33E+98	-25.61	115.53	6.72E-04
5	<=>	1	6.93E+77	-19.41	92.11	3.02E-01
5	<=>	2	1.88E+57	-13.31	76.31	4.69E+00
5	<=>	6	1.68E+81	-20.42	103.78	1.92E-03
5	<=>	10	1.39E+93	-24.76	102.88	2.28E-04
5	<=>	II	2.05E+90	-23.25	110.96	1.99E-04
5	<=>	11	1.54E+95	-25.21	103.18	9.92E-04
5	<=>	VI	1.15E+94	-24.13	111.43	2.05E-03
5	<=>	V	3.79E+93	-24.05	111.37	1.15E-03
5	<=>	12	1.29E+97	-25.69	102.06	5.46E-03
5	<=>	I	1.26E+94	-24.12	110.10	4.67E-03
5	<=>	3	1.34E+79	-20.87	86.43	4.17E-03
5	<=>	Ш	2.11E+75	-18.38	92.83	7.66E-01
5	<=>	4	5.00E+54	-12.79	55.91	1.27E+04
5	<=>	IV	2.86E+54	-12.21	54.20	9.29E+05
5	<=>	7	7.25E+99	-25.66	119.05	7.21E-04
5	<=>	9	1.08E+91	-23.97	108.77	2.24E-05
5	<=>	IX	3.12E+98	-25.39	119.97	1.24E-04
5	<=>	VIII	2.83E+98	-25.38	119.96	1.22E-04

6	<=>	10	1.56E+54	-13.51	58.84	6.48E+00
6	<=>	П	3.98E+53	-12.57	69.61	4.53E+00
6	<=>	11	3.28E+56	-14.03	59.28	2.88E+01
6	<=>	VI	9.15E+57	-13.63	70.34	4.77E+01
6	<=>	V	3.16E+57	-13.57	70.30	2.68E+01
6	<=>	12	1.77E+58	-14.46	57.76	1.68E+02
6	<=>	I	6.16E+56	-13.29	68.05	1.12E+02
6	<=>	3	2.70E+72	-19.08	69.11	1.17E+00
6	<=>	Ш	6.02E+69	-16.92	75.53	3.30E+02
6	<=>	4	1.77E+68	-16.53	76.41	8.91E+01
6	<=>	5	5.05E+78	-20.33	83.83	2.36E-01
6	<=>	IV	2.33E+81	-19.88	93.56	1.86E+01
6	<=>	7	1.52E+30	-5.38	38.52	4.22E+05
6	<=>	9	1.88E+40	-9.23	31.65	4.55E+05
6	<=>	IX	3.82E+46	-10.26	49.77	8.17E+04
6	<=>	VIII	3.49E+46	-10.25	49.78	7.97E+04
6	<=>	8	2.40E+51	-11.91	58.06	9.05E+02
6	<=>	VII	7.80E+58	-13.06	71.46	1.22E+04
7	<=>	1	1.18E+56	-12.78	75.37	1.73E+01
7	<=>	2	4.08E+74	-18.12	89.72	4.39E+00
7	<=>	6	4.65E+30	-5.40	48.72	6.35E+03
7	<=>	10	1.66E+72	-18.41	86.10	1.41E-02
7	<=>	П	5.94E+76	-18.96	98.11	2.82E-02
7	<=>	11	2.46E+73	-18.62	85.89	5.64E-02
7	<=>	VI	5.03E+79	-19.60	98.13	2.71E-01
7	<=>	V	1.89E+79	-19.55	98.11	1.52E-01
7	<=>	12	8.23E+73	-18.68	84.18	2.85E-01
7	<=>	I	3.95E+78	-19.26	96.31	5.63E-01
7	<=>	3	7.97E+92	-24.67	97.49	3.66E-03
7	<=>	III	2.35E+93	-23.40	104.79	1.78E+00
7	<=>	4	7.48E+92	-23.36	105.51	5.46E-01
7	<=>	9	3.53E+57	-13.75	65.60	8.78E+01
7	<=>	IX	5.72E+68	-16.21	82.18	1.41E+02
7	<=>	VIII	5.32E+68	-16.20	82.19	1.38E+02
7	<=>	8	6.03E+44	-10.23	47.85	4.35E+03
7	<=>	VII	1.03E+50	-10.73	62.95	1.11E+04

8	<=>	1	1.38E+66	-15.82	91.90	3.83E-02
8	<=>	2	3.70E+81	-20.28	103.85	1.03E-02
8	<=>	6	1.07E+54	-12.13	76.08	9.79E+00
8	<=>	10	1.03E+79	-20.53	100.30	3.09E-05
8	<=>	П	3.77E+80	-20.23	109.87	7.32E-05
8	<=>	11	9.62E+79	-20.68	100.02	1.20E-04
8	<=>	VI	3.84E+83	-20.90	109.99	6.89E-04
8	<=>	V	1.36E+83	-20.84	109.94	3.86E-04
8	<=>	12	1.79E+81	-20.95	98.91	6.01E-04
8	<=>	Ι	1.85E+83	-20.78	108.75	1.41E-03
8	<=>	3	3.39E+99	-26.75	111.41	8.55E-06
8	<=>	Ш	2.63E+98	-25.03	117.42	4.49E-03
8	<=>	4	9.06E+96	-24.72	117.34	1.40E-03
8	<=>	7	1.61E+47	-10.51	55.35	3.64E+03
8	<=>	9	6.24E+72	-18.21	87.07	1.35E-01
8	<=>	IX	2.96E+80	-19.71	99.96	3.14E-01
8	<=>	VIII	2.68E+80	-19.69	99.96	3.07E-01
8	<=>	VII	8.63E+45	-9.78	48.60	9.38E+05
9	<=>	1	9.15E+59	-14.12	65.58	1.79E+03
9	<=>	2	2.78E+74	-18.29	78.58	2.52E+02
9	<=>	6	1.06E+44	-9.56	38.89	6.93E+06
9	<=>	10	6.46E+75	-19.61	77.13	1.26E+00
9	<=>	II	1.25E+71	-17.57	84.72	7.27E-01
9	<=>	11	9.44E+77	-20.09	77.53	5.71E+00
9	<=>	VI	3.24E+75	-18.64	85.51	7.83E+00
9	<=>	V	9.95E+74	-18.56	85.45	4.35E+00
9	<=>	12	3.62E+80	-20.76	76.60	3.37E+01
9	<=>	I	5.20E+75	-18.68	84.12	1.89E+01
9	<=>	3	3.13E+93	-25.06	86.84	2.19E-01
9	<=>	III	9.91E+88	-22.39	91.78	5.57E+01
9	<=>	4	1.88E+85	-21.38	91.39	1.45E+01
9	<=>	5	8.57E+93	-24.66	97.70	3.78E-02
9	<=>	IV	9.51E+92	-23.21	104.92	2.56E+00
9	<=>	7	4.03E+61	-14.26	63.59	8.20E+04
9	<=>	IX	7.32E+35	-7.17	40.51	3.19E+05
9	<=>	VIII	6.64E+35	-7.16	40.53	3.10E+05
9	<=>	8	2.49E+75	-18.71	77.81	1.73E+02
9	<=>	VII	6.07E+78	-18.73	88.19	2.01E+03

10	<=>	1	4.48E+49	-11.38	40.17	5.19E+06
10	<=>	2	2.09E+69	-16.98	60.11	1.73E+05
10	<=>	6	5.81E+58	-13.98	62.17	1.71E+03
10	<=>	П	1.15E+33	-6.17	42.59	1.69E+05
10	<=>	11	6.06E+76	-19.77	61.83	8.72E+03
10	<=>	VI	1.98E+78	-19.61	74.09	1.88E+03
10	<=>	V	5.92E+77	-19.52	74.04	1.03E+03
10	<=>	12	1.11E+83	-21.51	62.13	8.38E+04
10	<=>	I	1.49E+78	-19.57	71.69	6.03E+03
10	<=>	3	1.14E+93	-25.07	71.61	1.55E+02
10	<=>	111	2.48E+88	-22.43	77.38	1.55E+04
10	<=>	4	1.68E+81	-20.37	76.27	2.81E+03
10	<=>	5	5.08E+94	-25.00	86.20	7.11E+00
10	<=>	IV	3.28E+91	-22.97	92.74	2.13E+02
10	<=>	7	3.17E+73	-18.05	77.65	2.28E+02
10	<=>	9	1.62E+75	-19.38	71.72	2.46E+01
10	<=>	IX	1.55E+77	-19.30	81.00	3.91E+01
10	<=>	VIII	1.37E+77	-19.28	80.99	3.86E+01
10	<=>	8	4.14E+79	-20.39	84.96	7.19E-01
10	<=>	VII	1.82E+83	-20.47	94.19	1.77E+01
11	<=>	1	8.28E+50	-11.79	40.00	6.19E+06
11	<=>	2	1.76E+72	-17.90	60.43	2.22E+05
11	<=>	6	4.62E+60	-14.62	61.58	2.15E+03
11	<=>	10	3.36E+76	-19.94	61.08	2.24E+03
11	<=>	П	5.37E+74	-18.91	71.92	1.88E+02
11	<=>	VI	7.80E+35	-7.01	41.76	5.44E+05
11	<=>	V	3.21E+35	-6.96	41.86	2.95E+05
11	<=>	12	5.83E+84	-22.06	62.01	1.06E+05
11	<=>	I	2.42E+80	-20.30	71.30	7.68E+03
11	<=>	3	2.70E+95	-25.83	71.56	2.02E+02
11	<=>	111	6.33E+90	-23.22	77.08	1.96E+04
11	<=>	4	9.71E+82	-20.97	75.58	3.45E+03
11	<=>	5	8.43E+95	-25.45	85.19	8.74E+00
11	<=>	IV	3.07E+92	-23.37	91.48	2.45E+02
11	<=>	7	2.55E+74	-18.43	76.41	2.65E+02
11	<=>	9	3.85E+76	-19.87	70.84	3.10E+01
11	<=>	IX	2.81E+78	-19.77	79.89	4.57E+01
11	<=>	VIII	2.46E+78	-19.76	79.88	4.46E+01
11	<=>	8	1.74E+80	-20.68	83.56	8.24E-01
11	<=>	VII	3.10E+83	-20.66	92.53	1.88E+01

12	<=>	1	1.98E+54	-12.54	46.85	2.80E+06
12	<=>	2	7.23E+76	-18.98	69.26	6.15E+04
12	<=>	6	2.18E+65	-15.71	71.02	4.64E+02
12	<=>	10	6.30E+81	-21.19	70.39	7.11E+02
12	<=>	П	8.54E+79	-20.15	81.74	4.01E+01
12	<=>	11	9.68E+83	-21.63	71.10	3.65E+03
12	<=>	VI	1.80E+85	-21.45	83.22	5.06E+02
12	<=>	V	4.99E+84	-21.36	83.15	2.76E+02
12	<=>	T	7.04E+39	-8.30	47.03	4.64E+04
12	<=>	Ш	1.22E+96	-24.49	86.73	4.41E+03
12	<=>	4	1.59E+87	-21.93	84.82	7.09E+02
12	<=>	IV	2.26E+96	-24.22	100.91	4.32E+01
12	<=>	7	5.93E+77	-19.13	85.46	4.82E+01
12	<=>	9	9.94E+81	-21.17	80.83	6.73E+00
12	<=>	IX	3.23E+82	-20.68	89.32	8.42E+00
12	<=>	VIII	2.81E+82	-20.67	89.30	8.19E+00
12	<=>	8	1.06E+84	-21.51	93.04	1.44E-01
12	<=>	VII	3.36E+87	-21.55	102.32	3.13E+00

Table S10: Rate constants for abstraction by resonant radicals from CH_4 and comparison between TST rate constants and the rate estimation rules.

C-1	Reactions $\frac{\text{Modified Arrhenius parameters}^{o} \text{Arrhenius parameters}^{o}}{n_{H} A_{H} n \text{E} A'_{H} \text{Ea}}$		$\Delta_R H^{298K}$	k (TST,	k (ra	te rule) ^b /k	(TST)					
Category			A _H	n	E	А' _н	Ea	(kcal/mol)	1000К)/#n _н ^a	500 K	1000 K	1500 K
	trans-CC=CC• + CH_4 trans-CC=CC + CH_3	6	82.5	3.19	26.1	1.27E+12	32.4	18.2	6.32E+05	1.57	1.67	1.61
	$cis-CC=CC \bullet + CH_4$ $cis-CC=CC + CH_3$	6	181.7	3.04	26.9	8.14E+11	32.9	19.9	3.18E+05	4.08	3.31	2.99
	$CCC=CC \bullet + CH_4$ $CC=CCC + CH_3$	3	188.0	3.18	26.0	5.18E+12	32.3	18.7	1.34E+06	0.71	0.79	0.77
	$C=CC \bullet + CH_4$ $C=CC + CH_3$	3	626.7	3.10	25.7	9.03E+12	31.9	18.2	2.96E+06	0.26	0.36	0.38
Primary	$C=C(C\bullet)CC + CH_4$ $C=C(C)CC + CH_2$	3	436.7	3.13	24.7	8.17E+12	30.9	17.1	4.30E+06	0.11	0.25	0.30
•	$C=CC_2 + CH_4$ $C=CC_2 + CH_2$	6	106.7	3.24	24.4	2.27F+12	30.8	17.0	2.53F+06	0.17	0.42	0.52
	trans- $CC=CC_{\bullet}+CH_{\bullet}$ $CC=CC_{\bullet}+CH_{\bullet}$	3	185.7	3 16	25.5	4 37F+12	31.8	18.3	1.47E+06	0.50	0.72	0.76
	$cis_{-}CC = CC + CH$ $CC = CC + CH$	3	50.5	3 3 2	25.5	4 28F+12	31.8	18.3	7 37E+05	0.93	1 43	1 53
		2	110.7	2 22	25.2	4.200.12	22.2	20.0	7.205+05	2.00	1.45	1.33
		5	119.7	5.22	20.8	4.551+12	33.2	20.0	1.675.06	2.00	1.44	1.21
	Average					4.42E+12	32.0		1.872+06			
	Standard deviation		75.0	2.20	26.5	2.82E+12	0.80	-	1.33E+06	0.46		
	C = C + C + C + C + C + C + C + C + C +	4	75.3 202 F	3.30	26.5	2.19E+17	33.1	20.8	1.28E+10	0.46	1.12	1.43
Socondan	C = C = C = C + C = C = C = C = C = C =	2	202.5	2.21	27.0	3.43E+17	22.0	21.0	1.20E+10	0.45	0.64	0.09
Secondary	$C = CC \bullet CC + CH_4$ $C = CCCC + CH_3$	2	133.5	3.20	27.3	2.45L+17 2.25E+17	33.6	21.4	1.01E+10	0.42	1.28	1 51
	$C=C(C)C=C+CH_4$ $C=C(C)CC+CH_2$	2	77.5	3.42	26.0	1.50E+17	32.8	19.6	1.03E+10	0.86	1.32	1.45
	Average	-	7715	5.12	20.0	2.38E+17	33.5	1510	1.11E+10	0.00	1.52	1.15
	Standard deviation					7.03E+16	0.55		1.25E+09			
-	$C=CC \bullet C_2 + CH_4$ $C=CCC_2 + CH_3$	1	58.4	3.40	28.0	7.90E+17	34.7	23.4	2.04E+10	0.83	0.88	0.84
Tertiary	$C=CC \bullet (C)CC + CH_4$ $C=CC(C)CC + CH_3$	1	92.7	3.30	28.2	5.82E+17	34.8	22.9	1.44E+10	1.27	1.21	1.13
	Average					6.86E+17	34.8		1.74E+10			
	Standard deviation					1.47E+17	0.06	-				
Secondary	$CYPE3 \bullet + CH_4$ $CYC_5H_8 + CH_3$	4	232.3	3.11	26.9	3.69E+17	33.1	21.6	2.13E+10	1.00	1.00	1.00
(Cyclics)	$CYC_6H_9A + CH_4 $ $CYC_6H_{10} + CH_3$	4	225.5	3.12	27.1	3.51E+17	33.3	21.8	1.88E+10	1.10	1.02	0.99
	Average					3.60E+17	33.2		2.01E+10			
	Standard deviation	1	27.0	2.20	27.0	1.26E+16	0.11		4.025.10	1 20	1.20	1 10
(Cyclics)	$MeCYPE3 \bullet + CH_4$ $MeCYC_5H_8 + CH_3$	1	37.9	3.29	27.8	1.25E+18	34.3	23.8	4.02E+10	1.30	1.20	1.19
(cyclics)	Necro ₆ Π_9 A + C Π_4 Necro ₆ Π_{10} + C Π_3	1	45.4	5.51	27.0	1.34L+10	34.2	24.0	3.10L+10	0.85	0.87	0.84
	Standard deviation					2.08E+17	0.05		4.552.10			
	$C=CC \bullet C=C + CH_{4}$ $C=CCC=C + CH_{2}$	2	2.51E+04	2.84	36.1	1.77E+19	41.7	31.7	1.34E+10			
Extended	$C=CC=CC \bullet + CH_4$ $C=CC=CC + CH_3$	3	513.3	3.14	30.5	5.57E+17	36.7	24.5	5.30E+09	0.57	0.51	0.47
resonance	$C=CC(C)=CC \bullet + CH_4$ $C=CC(C)=CC + CH_3$	3	136.3	3.30	29.8	4.48E+17	36.3	23.8	5.12E+09	0.39	0.43	0.41
	$C=CC=CC_2 \bullet + CH_4 \qquad C=CC=CC_2 + CH_3$	6	59.0	3.22	30.0	3.49E+17	36.4	24.3	3.88E+09	1.72	1.87	1.79
	Average					4.76E+18	37.8		6.91E+09			
	Standard deviation					8.61E+18	2.63	-	4.34E+09			
Extended	$CYC_6H_7 + CH_4$ CHD14 + CH ₃	4	272.5	3.11	34.6	4.66E+19	40.8	31.1	5.75E+10	1.40	1.18	1.07
resonance	$CYC_6H_7 + CH_4$ CHD13 + CH ₃	4	277.5	3.15	35.7	4.36E+19	42.0	31.0	2.93E+10	3.48	1.61	1.18
(Cyclics)	$MeCY13PD5 \bullet + CH_4 MeCY13PD + CH_3$	1	26.8	3.36	30.5	8.65E+18	37.1	27.2	6.62E+10	0.05	0.26	0.42
	CY13PD5•+CH ₄ CY13PD+CH ₃	2	32.5	3.05	27.7	5.50E+1/	33./	22.7	2.35E+10	0.02	0.48	1.41
	Average Standard deviation					2.495+19	30.4		4.41C+10 2 09F±10			
	Phenyl + CH ₂ Benzene + CH.	6	63 7	3,24	5 97	1.54F+11	12.4	-10.1	2.98F+08			
Aromatics	$\operatorname{Ben 7vl} + \operatorname{CH} \qquad \operatorname{Toulene} + \operatorname{CH}$	3	773.3	3.00	23 5	1 28F±1F	20.6	14.5	1 425+00			
	$Benzyi + CH_3$ Toulelle + CH ₄	з	123.3	5.09	25.5	4.20E+15	29.0	14.5	1.420+09			

Note: ^{*a*} The units for A_H , A'_H , and k(TST,1000 K) are cm³/mol-s, and are kcal/mol for $\Delta_R H^{(298)}$, E and E_a ; ^{*b*} The rate constant k(rate rule) has been calculated using the bold estimate rate rule listed at the bottom of the each subset. The rows of estimate rate rule list refitted parameters with the averaged values of rate constants of each group in the temperature range of 300 - 2500 K. Molecule structures are presented in abbreviated form as these in Table 1 in the text, with CYC5H8—cyclopentene, CYC6H10—cyclohexene, MeCYC6H8—methyl-cyclopentene, CHD13—1,3-cyclohexadiene, CHD14—1,4-cyclohexadiene, CY13PD—1,3-cyclopentadiene, MeCY13PD—methy-1,3-cyclopentadiene.

Table S11: Reaction rate constants for abstraction by resonant radicals from propene and comparison between TST rate constants and the rate estimation rules.

Cohogomi	Deastions	Mo	dified Arr	henius parar	neters ^a	Arrhenius pa	arameters ^a	Δ _R H ^(298K)	k (TST, k (rate rule) ^b /k		(TST)	
Category	Reactions	n _H	A _H	n	E	А' _н	Ea	(kcal/mol)	1000К)/п _н ^а	500 K	1000 K	1500 K
	$C=C(C)C \bullet + C=CC$ $C=C(C)C + C=CC \bullet$	6	0.99	3.70	14.2	5.05E+12	21.5	-1.21	9.93E+07	0.21	0.39	0.45
	$C=CC \bullet + C=CC$ $C=CC + C=CC \bullet$	3	4.20	3.62	16.0	1.12E+13	23.2	0	9.57E+07	0.50	0.40	0.35
	•30=20 + 30=30 30=30 + •30=30	6	2.25	3.63	15.3	6.54E+12	22.5	0	7.97E+07	0.42	0.48	0.48
Primary	trans-CC=C(C)C• + C=CC $CC=C(C)C + C=CC•$	3	0.73	3.71	14.0	3.94E+12	21.4	0.05	8.20E+07	0.24	0.47	0.55
	•33=2+ 33=333 32=34	3	0.20	3.69	15.1	9.29E+11	22.5	0.43	1.14E+07	2.88	3.37	3.38
	trans-CC=CC•+C=CC trans-CC=CC+C=CC•	6	0.46	3.64	15.3	1.47E+12	22.6	0.49	1.72E+07	2.03	2.24	2.18
	$C \bullet C = C(C)C + C = CC$ $CC = C(C)C + C = CC \bullet$	3	0.71	3.71	15.7	3.79E+12	23.1	1.76	3.40E+07	1.33	1.13	1.01
	Average (restricted fits)					4.70E+12	22.4		5.99E+07			
	Standard deviation					3.45E+12	0.69		3.78E+07			
	C=CC●CC=C + C=CC C=CCC=C + C=CC●	4	0.17	3.85	15.8	2.93E+12	23.4	2.60	2.21E+07	0.83	0.88	0.81
	C=CC•C + CC=CC C=CCC + CC=CC	2	2.59	3.64	16.2	1.62E+13	23.4	2.70	1.23E+08	0.31	0.32	0.30
Secondary	$C=CC \bullet CC + C=CC$ $C=CCCC + C=CC \bullet$	2	0.12	3.77	15.9	3.29E+12	23.4	2.92	2.51E+07	1.46	1.56	1.45
	$C=CC \bullet C + C=CC$ $C=CCC + C=CC \bullet$	2	0.98	3.70	16.6	4.91E+12	24.0	3.21	2.84E+07	1.76	1.38	1.16
	CC=CC●C + C=CC CC=CCC + C=CC●	2	0.84	3.80	16.5	9.24E+12	24.0	3.33	5.20E+07	0.97	0.75	0.63
	Average (restricted fits)					7.32E+12	23.6		5.01E+07			
	Standard deviation	_				5.58E+12	0.31		4.24E+07			
Tertiary	$C=CC \bullet (C)CC + C=CC$ $C=CC(C)CC + C=CC \bullet$	1	0.27	3.83	16.3	3.72E+12	23.9	4.64	2.24E+07	1.49	1.36	1.23
	$C=CC(C)C \bullet + C=CC C=CC(C)C + C=CC \bullet$	1	0.27	3.87	16.3	5.55E+12	24.0	5.18	3.21E+07	1.01	0.95	0.85
	Average (restricted fits)	_				4.64E+12	23.9		2.73E+07			
Secondary	CYPE3• + C=CC CYC_5H_8 + C=CC•	4	0.52	3.59	15.9	1.07E+12	23.0	3.39	1.00E+07	1.46	1.24	1.10
(Cyclics)	$CYC_6H_9A + C=CC$ $CYC_6H_{10} + C=CC\bullet$	4	0.49	3.60	15.8	1.15E+12	22.9	3.61	1.11E+07	1.29	1.12	1.00
	Average (restricted fits)	_				1.11E+12	23.0		1.06E+07			
Tertiary	MeCYPE3• + C=CC MeCYC ₅ H ₈ + C=CC•	1	0.11	3.72	15.9	6.65E+11	23.3	5.62	5.44E+06	1.52	1.28	1.15
(Cyclics)	$MeCYC_6H_9A + C=CC$ $MeCYC_6H_{10} + C=CC\bullet$	1	74.9	3.12	10.2	2.77E+10	16.4	5.79	7.23E+06	0.98	0.96	0.91
	Average (restricted fits)					3.46E+11	19.8		6.34E+06			
	●C=CC=C+C=CC C=CC=C+C=C●	2	3.63	3.60	23.1	8.46E+12	30.3	13.5	2.03E+06			
Extended	● C=CC=C(C)C+ C=CC C=CC=C(C)C+ C=CC●	6	0.32	3.66	18.8	1.21E+12	26.1	6.03	2.37E+06	2.16	2.30	2.26
resonance	C=CC=CC+C=CC C=CC+C=CC+	3	0.06	4.08	19.1	6.12E+12	27.2	6.28	7.05E+06	1.13	0.77	0.61
	C=CC(C)=CC + C=CC $C=CC(C)=CC + C=CC + C=CC$	3	0.11	4.10	19.2	1.32F+13	27.4	7.41	1.38F+07	0.64	0.39	0.30
	Average (restricted fits)					6.86F+12	26.9		7.74F+06			
	Standard deviation					6.05F+12	0.67		5 75E+06			
	CY13PD5++C=CC CY13PD+C=CC	2	0.2	3.46	15.6	1 15F+11	22.4	4.46	1.44E+06	0.03	0.47	1 22
Extended	MeCY13PD5++C=CC MeCY13PD+C=CC+	1	0.2	3 71	17.7	8 34F+11	25.0	9.01	2.80F+06	0.05	0.47	0.40
resonance		4	0.2	2.58	27.7	6 78E+11	20.5	12.8	2.002.00	5 2 2	2 78	2 1 8
(cyclics)		4	1.2	2 51	22.5	1 205-12	29.5	12.0	5 805+05	1.9/	1 1 2	1.00
	Average (restricted fits)	4	1.2	3.31	22.1	1.29L+12 7 39E+14	25.0 26 E	12.7	1 275+00	1.04	1.10	1.00
	Average (restricted itts)					7.20E+11 4.94E+11	20.5		1.2/2+00			
	Stanuaru ueviation					4.040+11	3.30		1.140+00			

Note: ^{*a*} The units for A_H , A'_H , and k(TST,1000 K) are cm³/mol-s, and $\Delta_R H^{(298)}$, E and Ea are kcal/mol; ^{*b*} The rate constant k(rate rule) has been calculated using the values of estimate rate rule listed at the bottom of the table. The rows of estimate rate rule list refitted parameters with the averaged values of rate constants of each group in the temperature range of 300 - 2500 K. The ratio uses the original k(TST) value. Molecule structures are presented in abbreviated form as these in Table 1 in the text, with CYC5H8—cyclopentene, CYC6H10—cyclohexene, MeCYC5H8—methyl-cyclopentene, MeCYC6H10—methyl-cyclohexene, CHD13—1,3-cyclohexadiene, CHD14—1,4-cyclohexadiene, CY13PD—1,3-cyclopentadiene, MeCY13PD—methy-1,3- cyclopentadiene.

		Forward			Reverse		
Reactions	A (s ⁻¹ or cm³/mol-s)	Ea (kcal/mol)	<i>k</i> (1000K) (s ⁻¹ or cm ³ /mol-s)	A (s ⁻¹ or cm³/mol-s)	Ea (kcal/mol)	<i>k</i> (1000K) (s ⁻¹ or cm ³ /mol-s)	Note
I <=> 1	4.55E+11	15.0	2.37E+08	4.15E+12	19.0	2.89E+08	From CBS-QB3 calculation
II <=> 7	5.35E+11	15.0	2.79E+08	4.39E+12	21.2	1.01E+08	From CBS-QB3 calculation
1 <=> IX	3.78E+12	36.7	3.57E+04	1.16E+13	3.2	2.28E+12	Rate rules for H + larger olefin*
1 <=> 6	4.21E+10	15.9	1.40E+07	2.41E+14	33.7	1.02E+07	5-member ring, $E_{strain}=6$, E_{addion} analogy to $CH_3+C_3H_{6}_2-C_4H_9^*$
1 <=> 2	5.55E+10	15.8	1.90E+07	5.13E+11	31.5	6.48E+04	1,6-H thift, Estrain=2.3, Ebi analogy to CCC.+2-C ₄ H ₈ _CCC+CC=CC.*
6 <=> IV	1.94E+14	36.0	2.64E+06	1.16E+13	3.2	2.28E+12	Rate rules for H + larger olefin*
6 <=> V	3.32E+14	34.5	9.36E+06	1.16E+13	3.2	2.28E+12	Rate rules for H + larger olefin*
6 <=> VI	5.28E+15	30.2	1.28E+09	4.44E+12	9.1	4.59E+10	Rate rules for CH ₃ + larger olefin*
6 <=> 7	4.79E+14	31.9	5.16E+07	4.21E+10	15.2	2.05E+07	5-member ring, Estrain=6, Eaddion analogy to C ₂ H ₅ +C ₃ H ₆ _CCCC.C*
2 <=> VIII	4.12E+15	34.8	9.94E+07	7.43E+13	5.8	3.93E+12	From CBS-QB3 calculation
2 <=> 3	2.12E+14	29.7	6.69E+07	3.70E+10	18.2	3.88E+06	1,4-H thift, Estrain=5.8, Ebi analogy to CCC.+1-C4H8_CCC+C=CC.C*
3 <=> 4	5.10E+09	8.3	7.81E+07	1.04E+14	27.9	8.36E+07	6-member ring, $E_{strain}=8$, E_{addion} analogy to $CH_3+C_3H_{6}2-C_4H_9^*$
4 <=> IV	7.96E+13	33.9	3.09E+06	2.32E+13	3.2	4.57E+12	Rate rules for H + larger olefin*
3 <=> 5	4.21E+10	8.8	5.01E+08	5.54E+14	25.7	1.32E+09	5-member ring, $E_{strain}=6$, E_{addion} analogy to $CH_3+C_3H_6_2-C_4H_9^*$
5 <=> VII	3.53E+13	35.1	7.48E+05	2.32E+13	3.2	4.57E+12	Rate rules for H + larger olefin*

Table S12: High pressure limit rate constants for the reactions shown in the C_6H_{11} PES in Figure 19 in the text.

	Reactions		A (cm ³ /mol-s or s ⁻¹)	n	Ea (kcal/mol)	<i>k</i> (1000K) (cm ³ /mol-s or s ⁻¹)
I	<=>	(1)	3.33E+20	-2.96	17.0	8.65E+07
1	<=>	IX	9.84E+34	-6.88	45.4	2.53E+04
L.	<=>	(6)	1.90E+36	-8.96	23.2	2.16E+04
1	<=>	Ш	1.63E+48	-11.01	38.1	7.26E+06
I.	<=>	V	2.83E+41	-9.57	38.4	2.23E+04
I.	<=>	VI	9.44E+42	-9.92	38.3	7.20E+04
I.	<=>	(2)	1.71E+59	-15.91	33.3	1.74E+04
I.	<=>	VIII	9.80E+50	-11.88	40.5	3.06E+06
1	<=>	(3)	8.05E+54	-13.46	40.7	4.29E+05
1	<=>	(4)	3.66E+84	-23.36	49.8	4.10E+03
I.	<=>	IV	5.26E+72	-18.71	53.2	9.28E+04
I.	<=>	(5)	7.98E+66	-18.20	41.8	1.43E+03
I.	<=>	VII	1.14E+60	-15.20	48.8	5.98E+03
I.	<=>	(7)	7.56E+51	-12.69	39.5	1.50E+05
I.	<=>	П	1.17E+63	-15.54	51.4	1.65E+05
(1)	<=>	IX	1.10E+13	-0.67	33.8	4.33E+03
(1)	<=>	(6)	3.41E+34	-8.60	17.2	9.36E+04
(1)	<=>	Ш	5.82E+38	-8.50	29.6	6.20E+06
(1)	<=>	V	5.51E+29	-6.40	29.4	1.33E+04
(1)	<=>	VI	7.09E+31	-6.92	29.3	4.71E+04
(1)	<=>	(2)	2.41E+56	-15.18	27.3	7.30E+04
(1)	<=>	VIII	3.93E+42	-9.66	33.1	2.41E+06
(1)	<=>	(3)	3.45E+48	-11.80	34.1	4.96E+05
(1)	<=>	(4)	5.06E+83	-23.19	46.6	8.67E+03
(1)	<=>	IV	1.18E+67	-17.26	47.8	7.13E+04
(1)	<=>	(5)	8.04E+62	-17.18	36.4	2.64E+03
(1)	<=>	VII	5.92E+49	-12.44	40.8	3.46E+03
(1)	<=>	(7)	2.30E+43	-10.36	32.2	1.72E+05
(1)	<=>	П	3.40E+49	-11.78	42.9	6.63E+04
(6)	<=>	IX	6.21E+22	-3.83	53.9	3.38E-01
(6)	<=>	Ш	1.82E+48	-10.81	37.7	3.96E+07
(6)	<=>	V	1.15E+34	-7.19	36.6	3.20E+04
(6)	<=>	VI	5.39E+37	-8.17	36.9	1.45E+05
(6)	<=>	(2)	4.48E+83	-23.10	58.4	3.81E+01
(6)	<=>	VIII	1.07E+63	-15.83	58.5	5.48E+02
(6)	<=>	(3)	4.14E+70	-18.40	60.7	1.40E+02
(6)	<=>	(4)	1.91+103	-28.96	72.7	
(6)	<=>	IV	1.34E+86	-23.03	72.5	1.57E+01
(6)	<=>	(5)	9.37E+84	-23.70	63.6	9.38E-01
(6)	<=>	VII	4.01E+68	-18.18	65.2	6.48E-01
(6)	<=>	(7)	3.70E+48	-11.30	39.4	1.12E+06
(6)	<=>	П	1.16E+43	-9.32	47.6	4.75E+04

Table S13: Rate constants at 1 atm for 500- 1800 K for the C_6H_{11} PES, from $CC=CC \bullet + C_2H_4$.

(2)	<=>	IX	2.69E+33	-7.89	60.1	4.23E-04
(2)	<=>	III	1.18E+86	-23.27	70.1	8.13E+00
(2)	<=>	V	7.24E+72	-20.04	67.3	1.03E-02
(2)	<=>	VI	1.53E+76	-20.90	68.0	4.22E-02
(2)	<=>	VIII	4.41E+60	-14.38	48.9	6.50E+06
(2)	<=>	(3)	6.15E+60	-14.73	45.9	3.79E+06
(2)	<=>	(4)	6.87E+94	-25.38	61.4	1.96E+05
(2)	<=>	IV	8.09E+89	-23.31	67.7	1.54E+05
(2)	<=>	(5)	2.92E+75	-19.96	49.4	6.38E+04
(2)	<=>	VII	4.75E+68	-17.49	57.6	3.92E+03
(2)	<=>	(7)	6.83E+84	-23.34	70.5	2.54E-01
(2)	<=>	П	2.72E+81	-22.21	75.2	2.26E-02
(3)	<=>	IX	1.46E+35	-8.43	58.7	1.10E-03
(3)	<=>	Ш	9.49E+70	-18.98	61.9	3.33E+00
(3)	<=>	V	2.29E+60	-16.47	60.2	6.37E-03
(3)	<=>	VI	8.58E+62	-17.11	60.6	2.34E-02
(3)	<=>	VIII	2.10E+46	-10.28	43.2	1.09E+06
(3)	<=>	(4)	3.68E+47	-11.87	21.7	1.58E+07
(3)	<=>	IV	3.97E+40	-8.82	32.7	9.63E+06
(3)	<=>	(5)	6.23E+44	-11.39	16.6	1.04E+07
(3)	<=>	VII	1.88E+18	-2.62	22.7	2.82E+05
(3)	<=>	(7)	9.94E+71	-19.75	62.9	9.89E-02
(3)	<=>	П	3.52E+74	-20.26	70.2	2.64E-02
(4)	<=>	IX	1.48E+61	-15.92	88.7	1.03E-06
(4)	<=>	III	6.44+107	-29.52	97.5	
(4)	<=>	V	3.71E+95	-26.57	94.8	1.31E-05
(4)	<=>	VI	4.17E+98	-27.35	95.5	5.02E-05
(4)	<=>	VIII	7.01E+88	-22.45	81.9	3.83E+03
(4)	<=>	IV	2.42E+53	-12.34	48.1	7.26E+05
(4)	<=>	(5)	4.03E+86	-22.83	59.9	1.02E+05
(4)	<=>	VII	2.19E+70	-17.55	66.7	1.33E+03
(4)	<=>	(7)	1.39+107	-29.77	97.9	
(4)	<=>	II	5.58+105	-29.22	102.8	
(5)	<=>	IX	3.47E+47	-11.97	77.1	5.97E-06
(5)	<=>	III	5.07E+89	-24.33	83.0	3.87E-02
(5)	<=>	V	1.04E+78	-21.52	80.7	6.30E-05
(5)	<=>	VI	7.90E+80	-22.25	81.3	2.40E-04
(5)	<=>	VIII	4.55E+66	-16.11	64.5	1.70E+04
(5)	<=>	IV	9.91E+68	-16.99	57.5	2.88E+05
(5)	<=>	IV	1.19E+30	-6.09	35.5	1.10E+04
(5)	<=>	(7)	4.84E+89	-24.77	83.7	1.19E-03
(5)	<=>	II	9.55E+89	-24.67	89.9	2.03E-04

(7)	<=>	IX	2.33E+31	-6.85	47.0	3.44E+00
(7)	<=>	Ш	6.93E+40	-8.98	31.0	1.30E+07
(7)	<=>	V	6.90E+32	-7.17	31.4	2.82E+04
(7)	<=>	VI	4.50E+34	-7.61	31.2	9.99E+04
(7)	<=>	VIII	3.16E+62	-16.18	49.9	1.11E+03
(7)	<=>	IV	2.84E+83	-22.78	62.2	3.30E+01
(7)	<=>	IV	5.22E+69	-18.99	57.1	1.84E+00
(7)	<=>	Ш	1.15E+22	-3.04	24.0	5.10E+07