Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Electronic Supplementary Information

Metal-Organic Kagome Lattices M₃(2, 3, 6, 7, 10, 11-hexaiminotriphenylene)₂ (M = Ni and

Cu): From Semiconducting to Metallic by Metal Substitution

Shuang Chen, Jun Dai and Xiao Cheng Zeng*

Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of

Nebraska-Lincoln, Lincoln, Nebraska 68588, United States

*E-mail: xzeng1@unl.edu

Figure S1. Optimized molecular units of (a) Ni-HITP and (b) Cu-HITP frameworks from the B3LYP/6-31G(d) calculations implemented in the Gaussian 09 software package.

Figure S2. Three possible (a) $Ni_3(HITP)_2$ and (b) $Cu_3(HITP)_2$ 3D crystals with a relative shift of the second layer (~1.8 Å) along the *b* axis, *a* axis, or both *ab* axes, respectively, within the unit cell. All the crystal structures have been optimized using DFT PBE-D3 method implemented in the VASP 5.3 software package. Their relative energies and unit cell parameters are also present here.

Figure S3. Comparison of computed band structures and DOS of 2D Ni₃(HITP)₂ sheet from PBE-D3 and HSE06 methods, both implemented in the VASP 5.3 software package. The HSE06 results are illustrated by dash lines. The Fermi level is marked by a horizontal blue line. The PBE-D3 HOVB and LUCB are highlighted in red and blue lines, respectively, whereas the HSE06 HOVB and LUCB are highlighted in orange and magenta lines, respectively.

(a) Ni₃(HITP)₂ Sheet

Figure S4. Computed DOS and PDOS of 2D (a) $Ni_3(HITP)_2$ and (b) $Cu_3(HITP)_2$ sheets near the Fermi level. The Fermi level is marked by the blue horizontal line. A zoom-in PDOS for the *d*-delocalized orbitals of $Cu_3(HITP)_2$ sheet is also highlighted in insets.