Electronic Supplementary Information

for

Intramolecular charge transfer character in tetrathiafulvaleneannulated porphyrinoids: Effects on core modification and protonation

Ramababu Bolligarla^a, Masatoshi Ishida^{*,b}, Vijayendra S. Shetti,^c Kazuhisa Yamasumi^b, Hiroyuki Furuta^b, and Chang-Hee Lee^{*,a}

^aDepartment of Chemistry, Kangwon National University, ChunCheon 200-701, Korea ^bDepartment of Chemistry and Biochemistry, Graduate School of Engineering and Education Center for Global Leaders in Molecular Systems for Devices, Kyushu University 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan

^c Department of Chemistry, BMS College of Engineering, Bull Temple Road, Bangalore 560019, India

CORRESPONDING AUTHORS

E-mail: <u>chhlee@kangwon.ac.kr</u> (C.-H. L.); <u>ishida@molecular-device.kyushu-u.ac.jp</u> (M.I.)

Figure S1. ¹H NMR spectrum of compound 7 in CDCl₃

Figure S2. ¹H NMR spectrum of 1 recorded in CDCl₃

Figure S3. ¹³C NMR (top) and its magnified (bottom) spectrum of 1 recorded in CDCl₃

Figure S4. MALDI-TOF mass spectrum of compound 1

Figure S5. ¹H NMR spectrum of 2 recorded in CDCl₃

gure S6. 13 C NMR (top) and the magnified (bottom) spectrum of 2 recorded in CDCl₃

Figure S7. DEPT spectra of 2 recorded in CDCl₃

Figure S8. MALDI-TOF mass spectrum of compound 2

Figure S9. HPLC traces of (a) 1 and (b) 2 eluted by CH₂Cl₂ with flow rate of 4 mL/min.

Figure S10. Ball-and-stick models of the optimized structures for (a) **1** and (b) **2** obtained by DFT calculations (B3LYP/6-31G*). NICS values are determined at the global center of the macrocycles, respectively.

Figure S11. Comparative fluorescence spectra of (a) 1 and (b) 2 recorded in CH_2Cl_2 (black) and THF (red).

Figure S12. (a) Molecular orbital energy diagrams for 1 and S_2TTP obtained by B3LYP/6-31G* level calculations and (b) the selected frontier MO density maps of 1.

Fi

gure S13. (a) Molecular orbital energy diagrams for 2 and S_4TTR obtained by B3LYP/6-31G*

level calculations and (b) the selected frontier MO density maps of 2.

Figure S14. Simulated electronic states of (a) 1, (b) 2 (c) $H_2 I^{2+}$ and (d) $H_2 2^{2+}$ obtained using TD-DFT calculations carried out at the B3LYP/6-31G* level.

Figure S15. EPR spectra of (a) **1** recorded in CH_2Cl_2 under dark (black) and light irradication (red) and (b) **2** under dark (black) and light irradiation (red) conditions. [compound] = 0.1 mM.

Figure S16. UV-vis-NIR absorption spectral changes upon chemical oxidation of (a) 1 and (b) 2 with *Magic Blue* in CH_2Cl_2 . Insets show the EPR spectra of radical cation species of 1 and 2, respectively.

Figure S17. UV-vis-NIR spectra of (a) H_21^{2+} and (b) H_22^{2+} obtained using different acids; TFA (black), HCl (blue) and MSA (red) in CH_2Cl_2 solution. Asterisks indicate the solvent scattering peaks.

Figure S18. UV-vis-NIR absorption and emission spectra (black line) of reference compounds, (a, b) S_2TTP and (c, d) S_4TTR recorded in CH₂Cl₂, respectively. In the presence of TFA, the spectral changes of S_2TTP and S_4TTR were seen (red line).

Figure S19. ¹H NMR spectral change of **1** in CDCl₃ upon addition of TFA. [TFA] = (a) 0 equiv. (b-j) 1-32 equiv. Asterisks indicate the residual solvent and impurities.

Figure S20. ¹H NMR spectral change of **2** in $CDCl_3$ upon addition of TFA. [TFA] = (a) 0 equiv. (b-j) 1-28 equiv. Asterisks indicate the residual solvent and impurities.

Figure S21. (a) Molecular orbital energy diagrams for $H_2 1^{2+}$ and $H_2 S_2 TTP^{2+}$ obtained by B3LYP/6-31G* level calculations and (b) the selected frontier MO density maps of $H_2 1^{2+}$.

Figure S22. (a) Molecular orbital energy diagrams for H_22^{2+} and $H_2S_4TTR^{2+}$ obtained by B3LYP/6-31G* level calculations and (b) the selected frontier MO density maps of H_22^{2+} .

Figure S23. UV-vis-NIR absorption spectra (solid line) of H_22^{2+} and H_21^{2+} in CH_2Cl_2 along with the theoretical vertical excitation energies (blue bar) obtained from TD-DFT calculations at B3LYP/6-31g(d) level.