Supporting Information

Novel ALD-assisted Growth of ZnO Nanorods on Graphene and Its Applications

in Cu₂ZnSn(S_xSe_{1-x})₄ Solar Cells

Kejia Jiao, Xiaofeng Wu, Chunyang Duan, Dangwen Zhang, Yu Wang^{*} and Yunfa Chen^{*}

K. J. Jiao, X.F Wu, D.W. Zhang, Y. Wang*, Prof. Y. F. Chen*
State Key Laboratory of Multiphase Complex Systems, Institute of Process
Engineering, Chinese Academy of Sciences, Beijing 100190 (P.R. China)
E-mail: <u>wyu@home.ipe.ac.cn</u>; yfchen@home.ipe.ac.cn

Figure S1. SEM and EDX spectra of ZnO deposited on SLG/SiO₂. The bright white part is dewetted ZnO islands. Note that the Zn content is only 2.39%, much smaller than ZnO deposited on SLG/Cu (see Figure S2).

88				Spectrum 1	
	2 4	6	 	12	
uii Sca	ie 9528 cts Cursor: 0.000				кеч
	Element	Weight%	Atomic%		
	СК	3.12	13.51		
	O K	3.11	10.10		
	Cu L	76.00	62.24		
	Zn L	17.78	14.15		
	Totals	100.00			

Figure S2. The EDX spectrum of ZnO deposited on SLG/Cu at 100 °C. Note that the Zn content is increased to 14.15%, showing the much improved wetting of graphene when it is in contact with copper.

Figure S3. The effects of graphene thickness on ZnO seed layers. (a) three-layer graphene. (b) seven-layer graphene.

Figure S4. The effects of temperature on ZnO. (a) 90 °C. (b) 96 °C, (c) 104 °C, (d) 110 °C.

Figure S5. Enlarged XRD pattern of CZTSSe (112) peak. It moves to higher 2theta

compared to the pure CZTSe, due to the remaining S atoms.

Figure S6. Top-down views of ZnO NRs. The diameters are estimated to be \sim 40 nm.

Device	J _{sc}	V _{oc}	FF	PCE(%)
	(mA/cm ²)	(V)		
ITO-based	4.1	0.68	0.44	1.2
(ITO/ZnO(NRs)/CdS/CZTS/Au)				
Graphene-based	6.3	0.5	0.32	1.01
(graphene/ZnO(NRs)/CdS/CZTSSe/Au.				
this work)				

Table S1. Comparison	of ITO- and graphene-ba	ased CZTS(Se) devices
----------------------	-------------------------	-----------------------