Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Electronic Supplementary Information (ESI)

for

New Insights into the Ideal Adsorbed Solution theory

Sylwester Furmaniak, Stanisław Koter, Artur P. Terzyk, Piotr A. Gauden, Piotr Kowalczyk

> Number of pages 12 Number of tables 2 Number of figures 9

Table S1

Values of the best-fit parameters for simulated single-component adsorption isotherms fitted by Eq. (21).

Carbon	MRE	<i>a_{m,i,1}</i>	<i>a</i> _{<i>m</i>,<i>i</i>,2}	<i>a</i> _{<i>m</i>,<i>i</i>,3}	<i>K</i> .,	K	K. a	n .,	n	n			
	[%]	[mmol/g]		N _{<i>i</i>,1}	h _{<i>i</i>,2}	N _{<i>i</i>,3}	<i>n</i> _{i,1}	11 ,2	n _{<i>i</i>,3}				
$i = CO_2$													
d0.5	0.4118	124.6	0.8009	0.01617	0.1492	8.785	115.9	1.138	0.9574	0.9469			
d0.9	0.4359	14.82	0.06306	0.7968	2.655	14.75	51.78	1.117	0.9193	0.9593			
d1.3	0.3037	5.899	0.1244	0.5241	12.50	760.3	114.9	0.9094	1.102	1.085			
d0.9_052	0.4358	13.63	1.0628	0.007729	3.510	51.87	798.2	1.156	0.9561	1.200			
d0.9_104	0.4246	1.412	12.58	0.06472	46.68	4.325	273.0	0.9575	1.186	1.047			
d0.9_156	0.4093	12.42	1.429	0.02606	5.385	54.83	655.6	1.114	0.9517	1.162			
$i = CH_4$													
d0.5	0.3097	5.721	25.72	0.005219	0.1901	0.1947	15.57	1.886	0.9971	1.902			
d0.9	0.2612	1.258	11.88	0.2845	0.05595	0.6793	9.051	0.9199	0.9872	1.040			
d1.3	0.2372	1.770	3.988	0.3260	0.1951	3.006	30.34	0.9327	0.9911	1.009			
d0.9_052	0.2721	11.94	0.5706	0.02157	0.6542	5.222	40.48	0.9859	1.014	1.128			
d0.9_104	0.2829	0.05931	11.64	0.5692	21.4781	0.6840	5.547	1.035	0.9826	1.035			
d0.9_156	0.2517	2.140	10.07	0.2639	0.1241	0.9603	12.51	0.9914	0.9949	1.008			
$i = N_2$													
d0.5	0.3890	1.449	34.33	4.282×10-5	0.6986	0.06031	5133	1.063	0.9942	0.9645			
d0.9	0.4244	2.929	9.113	3.474	0.3263	0.04279	1.096	1.482	0.9781	1.004			
d1.3	0.3411	2.929	3.330	1.145	0.02790	0.5954	3.536	0.9580	0.9798	1.016			
d0.9_052	0.3338	6.900	8.118	0.5013	0.03033	0.3502	2.949	0.9580	0.9776	1.128			
d0.9_104	0.4749	9.879	2.884	1.523	0.07437	1.385	0.5274	0.9538	1.018	1.684			
d0.9_156	0.4149	7.951	5.731	0.05370	0.07148	0.6920	11.11	0.9909	0.9917	1.411			

Table S2

The results of description of simulated data by both assumed G^{ex} expansions – Eqs. (32) and (33)

	$(a_1 + a_2)_{max}$	a _{CH4}	a_{N2}	range of <i>a_{max}</i>		
Carbon	at 1 MPa	pure CH ₄ at 25 MPa	pure N ₂ at 60 MPa	[mmol/g]		
	[mmol/g]	[mmol/g]	[mmol/g]	Eq. (32)	Eq. (33)	
d0.5	13	27	29	80-100	30-180	
d0.9	12	12	13	60-100	7-300	
d1.3	6	5.7	6	20-50	10-250	

Figure S1. Comparison of single gas (CO₂, CH₄ or N₂) adsorption isotherms (approximated by Eq. (21)) for all the considered carbons and related grand potentials calculated from Eq. (8). The data are presented for the simulated pressure ranges (see section 2.2).

Figure S2. Comparison of the results simulated directly for ale the considered gas mixtures (points) and the predictions of IAS theory (panes) for the d0.5 carbon. The maps of the relative errors (Δ) for the values of component adsorption amounts ($\Delta(a_i)$) and equilibrium separation factors ($\Delta(S_{1/2})$) obtained from the IAS theory.

Figure S3. As in Fig. S2 but for the d1.3 carbon.

Figure S4. As in Fig. S2 but for the d0.9_052 carbon.

Figure S5. As in Fig. S2 but for the d0.9_104 carbon.

Figure S6. As in Fig. S2 but for the d0.9_156 carbon.

Figure S7. Comparison of calculated activity coefficients for mixture adsorption on the raw and oxidised d0.9 carbons. The grey planes represent $\gamma = 1$.

CO₂/CH₄ mixture

Figure S8. Comparison of the activity coefficients (plotted as the function of the mole fraction of the 1st component in the adsorbed phase) for adsorption of all the considered mixtures on the d0.9 carbon (arbitrarily chosen values of grand potential (ψ) are presented). The lines present approximation by theoretical models (solid lines – Eqs. (34) and (35), dashed lines – Eq. (36)).

Figure S9. As in Fig. S8 but for the d1.3 carbon.