Supplementary Information

Simulation of X-Ray Absorption Spectra with Orthogonality Constrained Density Functional Theory

Wallace D. Derricotte and Francesco A. Evangelista

Contents

1	Optimized cartesian geometry of adenine	2
2	Optimized cartesian geometry of thymine	3
3	Thymine Oxygen K-Edge	4
4	Thymine Nitrogen K-Edge	5
5	Thymine Carbon K-Edge	6
6	Adenine Nitrogen K-Edge	7
7	Adenine Carbon K-Edge	8

1 Optimized cartesian geometry of adenine

С	-1.970585	-1.395137	-0.045467
Ν	-1.881922	-0.101178	-0.187746
С	-0.530036	0.162042	-0.075212
С	0.194518	-1.008769	0.138884
Ν	-0.752839	-2.003591	0.155019
Н	-0.575304	-2.985001	0.288894
Н	-2.887084	-1.963704	-0.076026
С	0.220821	1.350420	-0.134877
Ν	1.548880	1.275830	0.014725
С	2.109044	0.076787	0.214691
Ν	1.515353	-1.110912	0.290953
Н	3.187892	0.080293	0.328711
Ν	-0.350021	2.556054	-0.336758
Н	-1.344255	2.632817	-0.451219
Н	0.231906	3.373853	-0.370895

2 Optimized cartesian geometry of thymine

С	-1.246495	0.412642	-0.003573
С	-2.507237	1.217084	-0.011848
Н	-3.117873	1.004161	-0.892346
Н	-2.252332	2.276314	-0.024950
Н	-3.115843	1.025528	0.874939
С	-1.217630	-0.931441	0.012635
Ν	-0.056489	-1.654192	0.020052
С	1.197028	-1.083944	0.011743
Ν	1.154191	0.288466	-0.004799
С	0.033038	1.117787	-0.013561
Н	2.050520	0.753906	-0.011435
0	0.171793	2.321663	-0.028248
0	2.217898	-1.730464	0.018397
Н	-2.125375	-1.524102	0.020825
Н	-0.070123	-2.660021	0.032219

3 Thymine Oxygen K-Edge

Table S1 Calculated and experimental thymine oxygen core excitation energies in eV are shown in the table. All computations are performed using the def2-TZVP basis set and B3LYP functional. The largest contribution to the particle orbital (ϕ_p) with reference to the ground state valence set is reported along with the hole orbital (ϕ_h) for each transition. Relative oscillator strengths (f_{rel}) are also reported

	OCDFT			Ex	periment
ϕ_h	ϕ_p	ω_{fi}	f _{rel}	Peak	ω_{fi}
O ₂	81.8% π_1^*	531.05	1.000	А	531.4
O_1	64.0% π_2^*	532.08	0.968	В	532.3
O_1	71.2% π_1^*	533.38	0.146	D /	- 5 22.9
O ₂	78.3% π_2^*	533.75	0.162	D	≈ 555.8
O_1	77.0% D ₁	534.74	0.008		
O_2	65.9% D ₁	534.85	0.042		
O_2	44.1% D ₃	535.28	0.020		
O_1	69.5% D ₃	535.46	0.098		
O_2	$60.8\% D_2$	535.53	0.085	С	535.7
O_1	76.0% π_3^*	536.12	0.222		
O_2	$69.0\% \ \pi_3^*$	536.24	0.104		
O_2	86.3% D ₄	536.34	0.052		
O_1	$76.3\%\ D_2$	536.60	0.039		
O ₂	44.4% D ₆	537.02	0.024		
O_1	83.5% D ₄	537.10	0.047		
O_2	63.7% D ₅	537.21	0.021	D	527 1
O_1	35.6% D7	537.45	0.054	D	337.1
O_2	44.0% D7	537.67	0.073		
O_1	43.6% D ₅	537.72	0.036		
O_1	70.7% D ₆	538.49	0.058		

4 Thymine Nitrogen K-Edge

Table S2 Calculated and experimental thymine nitrogen core excitation energies in eV are shown in the table. All computations are performed using the def2-TZVP basis set and B3LYP functional. The largest contribution to the particle orbital (ϕ_p) with reference to the ground state valence set is reported along with the hole orbital (ϕ_h) for each transition. Relative oscillator strengths (f_{rel}) are also reported

OCDFT			Exp	periment	
ϕ_h	ϕ_p	ω_{fi}	f _{rel}	Peak	ω_{fi}
N_4	$81.8\% \; \pi_1^*$	401.18	1.000	۸	401.7
N_3	64.0% π_2^*	401.76	0.805	A	401.7
N_4	78.3% π_2^*	402.50	0.087		
N ₃	$77.0\% D_1$	403.09	0.863	В	402.7
N_4	65.9% D ₁	403.33	0.765		
N_4	44.1% D ₃	404.17	0.912	С	404.1
N_4	60.8% D ₂	404.94	0.144		
N_3	69.5% D ₃	405.09	0.374		
N_4	86.3% D ₄	405.31	0.864		105 5
N_3	76.0% π_3^*	405.41	0.333	D	405.5
N_4	69.0% π_3^*	405.62	0.183		
N_3	71.2% π_1^*	405.67	0.490		
N ₃	76.3% D ₂	405.76	0.177		

5 Thymine Carbon K-Edge

Table S3 Calculated and experimental thymine carbon core excitation energies in eV are shown in the table. All computations are performed using the def2-TZVP basis set and B3LYP functional. The largest contribution to the particle orbital (ϕ_p) with reference to the ground state valence set is reported along with the hole orbital (ϕ_h) for each transition. Relative oscillator strengths (f_{rel}) are also reported

	OCDFT			Experiment	
ϕ_h	ϕ_p	ω_{fi}	f _{rel}	Pea	k ω_{fi}
C ₈	92.1% π_1^*	284.90	0.372	А	284.9
C ₇	95.9% π_1^*	285.98	0.698	В	285.9
C ₉	75.4% π_2^*	286.56	0.036		
C_8	97.6% $\pi_2^{\tilde{*}}$	287.33	0.171		
C_6	81.8% $\pi_1^{\bar{*}}$	287.68	0.792	С	287.8
C9	89.9% π_1^*	287.92	0.117		
C_8	48.1% D ₃	288.19	0.006		
C ₉	87.7% D ₁	288.46	0.229		
C_8	53.9% D ₁	288.94	0.037		
C9	85.1% D ₃	289.01	0.158		
C ₇	94.2% π_2^*	289.06	0.289		
C_5	64.0% π_2^{*}	289.14	1.000	D	289.4
C_8	$32.5\% D_3$	289.17	0.017		
C_7	90.3% D ₁	289.22	0.001		
C9	$63.1\% \ \pi_3^*$	289.26	0.333		
C ₉	49.5% D ₂	289.31	0.375		
C ₈	67.1% D ₂	289.67	0.082		
C_8	77.0% D ₄	289.68	0.105		
C_6	78.3% π_2^*	289.94	0.135		
C ₉	75.4% D ₄	290.14	0.023		
C_8	33.3% D ₅	290.31	0.119		
C_5	71.2% π_1^*	290.33	0.029	F	200.7
C9	30.5% D ₅	290.43	0.047	Ľ	290.7
C_7	71.6% D ₃	290.44	0.050		
C_7	41.5% D ₂	290.54	0.041		
C ₈	38.1% D ₆	290.80	0.093		
C9	24.4% D ₆	291.12	0.076		
C_8	61.2% D ₇	291.13	0.024		
C ₇	$45.5\% \ \pi_3^*$	291.42	0.018		
C ₇	83.1% D ₄	291.44	0.001		
C9	24.8% D ₅	291.45	0.289		
C_6	65.9% D ₁	291.59	0.036		
C_7	44.3% D ₅	291.83	0.055		

6 Adenine Nitrogen K-Edge

Table S4 Calculated and experimental adenine nitrogen core excitation energies in eV are shown in the table. All computations are performed using the def2-TZVP basis set and B3LYP functional. The largest contribution to the particle orbital (ϕ_p) with reference to the ground state valence set is reported along with the hole orbital (ϕ_h) for each transition. Relative oscillator strengths (f_{rel}) are also reported

	OCDFT			Ex	periment
ϕ_h	ϕ_p	ω_{fi}	f _{rel}	Peak	ω_{fi}
N ₄	81.0% π_1^*	399.14	0.851		
N_3	63.7% π_1^*	399.28	0.926	А	399.5
N_5	92.6% π_2^*	399.42	1.000		
N-	02 10% π^*	300.60	0.002		
IN5 NL	$92.4\% n_1$	400.30	0.002	A'	≈ 400.4
184	98.9% n ₂	400.39	0.022		
N_3	81.6% π_2^*	401.21	0.109	\mathbf{B}'	401.3
N.	87 10% π*	401 43	0.364		
IN2 NL	$66.2\% \pi^*$	401.45	0.304		
1N3 N	60.2% π_3	401.79	0.145		
IN1 N	$09.5\% n_1$	401.81	0.394		
N4	$77.4\% \pi_3$	401.95	0.184	р	401.0
N ₅	56.7% π_3^{*}	402.10	0.017	В	401.9
N_5	$34.7\% \pi_3^*$	402.15	0.013		
N_2	78.4% D ₃	402.27	0.204		
N_4	80.2% D ₂	402.36	0.003		
N_3	90.2% D ₂	402.42	0.012		
N_4	83.4% D ₃	402.73	0.038		
N_3	69.0% D ₃	402.80	0.008		
N_5	36.4% D ₃	402.80	0.049		
N_1	74.8% π_2^*	403.08	0.122		
N_5	39.1% D ₅	403.18	0.030	G	402.0
N_4	48.5% D ₄	403.22	0.033	C	403.0
N_1	87.2% D ₂	403.25	0.418		
N_3	$80.4\% D_4$	403.32	0.074		
N_2	57.1% D ₆	403.34	0.918		
$\tilde{N_5}$	91.1% D ₆	403.38	0.052		
N-	Q1 80% π*	404 33	0.038		
N.	42.3% D ₃	404.33	0.038		
1N3 NI.	42.370 D8 97 10/- π*	404.44	0.025		
1N2 N	50.80' D	404.33	0.011		
1N3	39.8% D ₆	404.71	0.039		
IN5 N	29.0% D ₅	404.75	0.031		
N4	91.9% D ₁₀	404.79	0.253		
N_2	56.6% D ₂	404.97	0.115		

7 Adenine Carbon K-Edge

Table S5 Calculated and experimental adenine carbon core excitation energies in eV are shown in the table. All computations are performed using the def2-TZVP basis set and B3LYP functional. The largest contribution to the particle orbital (ϕ_p) with reference to the ground state valence set is reported along with the hole orbital (ϕ_h) for each transition. Relative oscillator strengths (f_{rel}) are also reported

	OCDFT			Ex	periment
ϕ_h	ϕ_p	ω_{fi}	f _{rel}	Peak	ω_{fi}
C ₁₀	92.6% π_2^*	286.32	0.298	٨	286.4
C9	81.0% π_1^*	286.46	0.936	A	280.4
C10	92.4% π^*	286 71	0 260		
C_7	$82.1\% \pi_1^*$	286.86	0.893	В	286.8
- <i>'</i>			1 0 0 0		
C_6	69.3% π_1^*	287.27	1.000	С	287.4
C_8	63.7% π_1^*	287.41	0.961		
C_8	$81.6\% \ \pi_2^*$	287.86	0.000		
C_{10}	$34.7\% \ \pi_3^{\tilde{*}}$	287.93	0.092	C'	pprox 288.0
C9	98.9% π_2^*	288.02	0.026		
C ₆	$74.8\% \ \pi^*_2$	288.78	0.008		
C_{10}	$56.7\% \pi^*_2$	288.89	0.006		
C ₇	78.4% D ₃	288.91	0.001	D	289.0
C_{10}	36.4% D ₃	289.16	0.038		
C_8	66.2% π_3^*	289.21	0.014		
Co	77.4% π_2^*	289.41	0.016		
$\tilde{C_7}$	$87.1\% \pi_2^3$	289.43	0.042	Е	
C ₇	57.1% D ₆	289.66	0.329		
C ₁₀	39.1% D5	289.82	0.029		
C_9	80.2% D ₂	289.98	0.266		
C_8	90.2% D ₂	290.06	0.044	F	
C ₉	83.4% D ₃	290.14	0.166		
C_6	87.2% D ₂	290.15	0.035		
C_7	94.8% π_2^*	290.36	0.086		
C ₁₀	91.1% D ₆	290.37	0.020		
C_{10}	61.6% D ₇	290.42	0.031		
C ₉	48.5% D ₄	290.45	0.014	G	
C_8	69.0% D ₃	290.61	0.010	U	
C_6	77.2% π_3^*	290.66	0.060		
C_7	56.6% D ₂	290.77	0.064		
C9	61.7% D ₆	290.94	0.018		