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S1.	  Strain	  Notations	  
 Positive strain is taken as tensile strain. Negative strain is taken as compressive strain. 

Strain may be given in percentages or equivalently in multipliers, e.g. +2% strain is the same as a 

fractional multiplier of 1.02, and -2% strain is the same as a fractional multiplier of 0.98. For 

some raw data uploaded with the Supporting Information, strain is given in fractional multipliers 

multiplied by 1000, in order to allow for fine strain gridding without using periods in directory 

names, e.g. 1020 indicates +2% strain, 980 indicates -2% strain, and 1002 indicates +0.2% strain, 

or a multiplier of 1.002. 
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S2.	  2x2x2	  Supercell	  
The general configuration of atoms for the 2x2x2 supercell is given in Figure S2.1, which 

was rendered using VESTA.1 Atomic radii rather than crystal radii are used in this and other 

figures in order to prevent the cations from being obscured by the larger anions. The A-site 

cations are in green, numbers 1 through 8, the B-site cations are in purple, numbers 9 through 16, 

and the oxygen anions are in red, numbers 17 through 40. Additional oxygen atoms from 

neighboring repeated supercells are shown to complete the octahedra. The positions shown in 

Figure S2.1 are from LaMnO3 and vary among the different compositions, although the 

qualitative structures are the same. 

 

S3.	  Orthorhombic-‐to-‐Cubic	  Assumption:	  
 The relaxed perfect supercells for the various perovskites were orthorhombic rather than 

perfectly cubic, with an average angle between any two lattice vectors of 90.1°, a standard 

deviation of 0.3°, and a range between 89.8° and 91.4°. 

 For all strains, we strain the perfect supercell along lattice vectors a and b and fit for the 

lowest-energy strain along lattice vector c (see Section S10). For each strain case in lattice 

vectors a and b, the fitting equation is a cubic equation of supercell energy as a function of strain 

along lattice vector c (details are in Section S10). The local minimum in energy of the fit 

function is located, and the corresponding value of the strain along lattice vector c is taken. 

Adjusting lattice vector c to be orthogonal to lattice vectors a and b changes supercell 

energies by less than one-tenth of 1 meV, as shown in Table S3.1. Due to the small difference in 

supercell energies, and the simplicity of using orthogonal principal axes, in all subsequent 
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mathematical treatments, we assume that strain percentages along lattice vectors a, b, and c are 

equivalent to strain percentages along the three principal orthogonal axes, x, y, and z. 

S4.	  Pseudopotentials,	  Electron	  Smearing,	  and	  Climbing	  Nudged	  Elastic	  Band	  
(CNEB)	  Calculations:	  

The choice of PAW-GGA PW-91 pseudopotentials was based on a recommendation on 

the VASP website for oxides2 and from previous work on perovskites.3 The soft oxygen 

pseudopotential was used, having a comparable maximum cutoff energy to most of the transition 

metal pseudopotentials, and having been shown to be adequate for many oxides.3 The cutoff 

energy for relaxations and static calculations was taken as 1.5 multiplied by the cutoff energy 

suggested for the highest cutoff energy pseudopotential in the structure.  

Gaussian smearing was used for all relaxations because the structure of most of the 

compounds appeared semi-metallic in VASP and Gaussian smearing would produce “reasonable 

results in most cases,”4 without being prohibited for either insulators or metals. A smearing 

width of 0.05 eV was used for all calculations. A conjugate gradient algorithm was used for the 

ionic relaxations of the bulk cells and endpoints. A quasi-Newton algorithm with a force scaling 

factor of 0.5 was used for the nudged elastic band calculations.  

The migration energy for an oxygen vacancy was determined using the climbing nudged 

elastic band method (CNEB) with 3 images (excluding the endpoints).5, 6 Three images were 

used to ensure that the migration profile was demonstrating a single maximum rather than a local 

maximum-local minimum-local maximum, or to determine a more accurate energy for the global 

maximum. The climbing NEB method as opposed to the regular NEB method was used to ensure 

that one of the images climbed to the maximum energy transition state.5 A spring constant of -5 

eV/Å2 was used.  
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In order to accomplish the NEB calculations in a quick, automated manner, a set of 

Python7 scripts was written which took in a set of parameters, such as those necessary for the 

INCAR and POSCAR files in VASP, and then automate the calculation process. The scripts set 

up and run the first calculation, wait for the calculation to complete, modify the INCAR files as 

necessary, and submit the next calculation in the set, until all steps in the workflow are 

completed. These tools are part of the MAterials Simulation Toolbox (MAST), which is under 

development at the University of Wisconsin-Madison.8  

 The calculation steps for no strain were as follows: 1) bulk relaxation to an energy 

convergence of 1 meV/atom between relaxations, 2) creation and internal relaxation of two 

endpoints from the bulk, 3) static calculations of both endpoints, with tetrahedral smearing with 

Blöchl corrections9 for a more accurate energy calculation, although keeping the same non-

Gamma kpoint mesh, 4) linear interpolation of three images with center of mass adjustment from 

endpoint static runs, and using static endpoints as the NEB endpoints, 5) CNEB calculation, 6) 

static recalculation of all images with tetrahedral smearing. The NEB images were found to have 

no symmetry detected by VASP so are not expected to have any problems with trapping in high-

symmetry states.  

 

S5.	  GGA	  vs.	  GGA+U	  
Many researchers use DFT+U10 methods to treat correlations in transition metal oxides, 

including perovskites.3 Although many exceptions in the literature exist,11, 12 transition metal 

oxides are often treated with DFT+U in order to compensate for the electron self-interaction and 

excessive delocalization of d-orbital electrons in the plain GGA.  Adopting values of U that have 
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been optimized by studying non-perovskites13 is often reasonable for studying related properties 

in an individual perovskite.  

However, this study does not attempt to use U corrections due to uncertainty in their 

values, frequent convergence problems with their use,14-16 and the fact that the present work is 

not focused on redox energies where U seems to play a particularly important role.17 In 

particular, we expect that many of the errors associated with not using U will cancel when 

considering activation energies. 

Figure S5.1 shows calculated GGA and GGA+U barriers, with some cases showing up to 

1 eV difference, using U-values given in Table S5.1 (B=Sc and B=Ga are omitted as they were 

expected to have no need for U correction as they have no d valence electrons in the 3+ state). 

These results suggest that the overall barrier magnitude is dependent on U value. However, in 

general we find no correlation of strain effects with barrier magnitude (see Section S8), so the 

changes in barriers with U do not necessarily suggest significant changes in the strain effects.  

Furthermore, it is reasonable to expect that significant cancellations between barriers at different 

strain states will remove most of this U dependence.  Therefore, we expect that our finding of 

decreased migration barrier with increasing tensile strain also applies to GGA+U barriers.  That 

said, further study with U corrections and hybrid methods are clearly warranted in the future. 

 

S6.	  Ferromagnetic,	  High-‐Spin	  Starting	  Configuration	  
Some of the LaXO3 perovskites have antiferromagnetic (AFM) structures below a certain 

Néel temperature.18 The AFM structures arise from superexchange effects, mediated by the 

oxygen between two B-site cations.19 The A-site cations and the oxygen anions have no 

magnetic moment and therefore no magnetic structuring.  
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There was noticeable disagreement between experimentally reported magnetic moments 

and our calculated bulk magnetic moments for Ti, V, Fe, Co, and Ni (see Table S6.1). This 

discrepancy may be due to several factors, including: 

• Antiferromagnetic structures in experiment not present in the calculations, which are all 

ferromagnetic (FM) 

• Incomplete treatment of the orbital moments, as in LaTiO3,20 which might require the 

addition of the spin-orbit coupling parameter in VASP 

• Excessive delocalization of d-orbital electrons, which could be at least partially corrected by 

using GGA+U 

The magnetic moments changed noticeably between the bulk and the endpoints for B-site 

cations Ti, Fe, Co, and Ni, and between the endpoints and the middle NEB image (the highest 

energy image) for Sc, Ti, Cr, Mn, Co, and Ni. This apparent change in magnetic moment occurs 

whether the moment is fixed using the MAGMOM tag in the INCAR or not. 

In general we model our systems as FM.  This choice is motivated by the fact that for 

SOFCs, which is our primary motivation, these systems are used under conditions of high 

temperature, where they are paramagnetic.  While paramagnetic order is generally not practical 

to model, its more metallic character is often better approximated by a ferromagnetic than AFM 

arrangement.3.  Nonetheless, we made an attempt to consider the effect of using the experimental 

AFM structures in place of the FM structure on the migration barriers (see Table S6.2). This 

result suggests that below temperatures where magnetic ordering occurs significant alterations in 

barriers from our FM values are possible. However, the impact does not seem to be large enough 

to change a very high barrier (over 1.5 eV) to a low barrier (less than 0.5 eV) material, or vice 

versa.  
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The initial magnetic moment on an atom is set as 1µBohr for each A-site cation, 5µB for 

each B-site cation, and 1µB for each oxygen anion, in a ferromagnetic configuration. We observe 

that VASP is able to relax these high spins to high-spin (B=Mn), intermediate-spin, low-spin, 

and no/nearly no magnetization states (La, O, B=Sc, B=Ga) in a sensible way, so that the 

A=1µB, B=5µB, O=1µB starting configuration may be consistently applied across all systems. 

Figure S6.1, with references in Table S6.3, shows that calculated migration barriers in the 

compensated case agree well with the results of high-temperature experiments. (More 

information on compensation is in Section S7). The compensated case should be more similar to 

the experimental doped systems than the uncompensated case. These results suggest that our 

ferromagnetic approximation is reasonable for treating the paramagnetic systems. More care 

should be taken when interpreting this data for use at lower temperature where strong magnetic 

ordering occurs. 

 

 

S7.	  Charge	  Compensation:	  Electron-‐Removal	  Compensation	  versus	  Doping:	  
In this section, we describe our approach to compensating the charges associated with an 

oxygen vacancy formation and evaluate the difference between our electron-removal 

compensation mechanism, where we remove one oxygen atom along with two electrons, and 

actually doping the supercell. 

An oxygen vacancy in a perovskite means that there is one fewer oxygen atom that can 

receive electrons donated by the cations. In order to preserve the charge neutrality of the overall 

crystal, the cations in the crystal must give up two fewer electrons for every oxygen vacancy, or 
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equivalently, one can think of the oxygen vacancy as donating two electrons to the system. The 

donated electrons typically reduce transition metal B site cations in the material, or are at least 

formally considered to do so.  For pure A3+B3+O3 perovskite, the excess electrons will generally 

reduce the B-site cations (which typically contain transition metals) from 3+ to 2+.  However, 

most perovskite systems used for fast oxygen conduction have lower-valence dopant atoms on 

the A- or B-sites, such as Sr2+, which create B4+ cations.  For these doped systems the donated 

electrons may reduce some B-site cations from 4+ to 3+.  In general the doping oxidizes the 

system more than the oxygen vacancies reduce the system, although this may not hold for all 

systems and can depend on temperature and oxygen partial pressure. Therefore, the system is 

predominantly a 4+ and 3+ B-site cation mixture and most oxygen will diffuse in an environment 

of 4+ and 3+ cations.  The exact environment around the diffusing oxygen could be extremely 

complex.  However, it is likely from simple electrostatic arguments that the 3+ will be closer to 

the vacancy and most systems are predominantly 3+.  Furthermore, since doping levels and 

species vary, they open up a very wide-range of possible local environments.  To keep the 

calculations tractable and avoid complexities of dopants couplings we therefore generally work 

with cells without explicit dopants. Thus we perform all calculations for undoped systems and 3+ 

cations.   

In order to maintain 3+ cations even in the presence of the extra electrons donated by the 

oxygen vacancy we create a vacancy by removing from the supercell both an oxygen atom with 

its six valence electrons and an additional two electrons. This procedure is the computational 

equivalent of substituting lower-valence dopant atoms on A-sites or B-sites somewhere else in 

the crystal beyond the boundaries of the supercell. The advantage of this method is that it avoids 
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the interaction between oppositely-charged defects by creating a single oxygen vacancy in the 

supercell without using dopant atoms.  

Although the avoidance of explicitly including dopants greatly simplifies the calculation, 

it is important to assess if this approximately approach causes significant errors in the results.  

We therefore also performed a series of migration energy calculations with explicit Strontium 

doping in order to assess if the values are similar to those of the compensated method. For the 

doped supercells, we remove an oxygen atom (the atom only, without removing any extra 

electrons) and also substitute two Strontium atoms at two of the Lanthanum A-sites. VASP 

relaxes these cations to a +2 and a +3 state, respectively. For the La0.75Sr0.25BO3 series, cation 

positions 7 and 8 were chosen (see Figure S2.1). This positioning is arbitrary. Differences 

created by different positioning of the A-site defects are expected to be small compared to the 

margin of error associated with the overall effects of including vs. excluding dopants and other 

errors in due to finite size and inherent DFT limitations. For example, the migration barrier for 

the O29 to O30 hop in La0.75Sr0.25MnO3 with Strontium atoms in positions 4 and 5 is 0.98 eV, 

while the migration barrier with Strontium atoms in positions 7 and 8 is 1.00 eV. 

The migration barrier difference between the two methods of compensation is shown in 

Table S7.1 as the LaBO3 electron-removal compensated barrier minus the La0.75Sr0.25BO3 Sr-

doped barrier for each B-site cation. The magnitude of the difference is on average 140 meV, 

with a standard deviation around this difference of +/- 69 meV.  This range of differences is 

below the range assumed solely for jump directions (see Section S8), and is likely a result of the 

different geometry imposed by adding Sr atoms to the doped cell. However, the shift has a clear 

direction, and the effect of Sr can be more usefully thought of as raising the no-dopant 

simulation results by about 140 ± 69 meV.  This value provides a relatively easy shift one can 
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apply to relate the values from the two approaches if needed. Given that the shift is relatively 

constant we expect that the strain response from our compensated calculations and the explicit Sr 

doped calculations will be similar, yielding similar energy/% strain slopes.  

Overall, as this Sr coupling is hard to model accurately, electron removal is chosen to 

perform the strained, compensated calculations. We believe this approach better represents the 

pure compensation effect independent of which dopants and dopant placements are used to 

perform the compensation. We also believe that omitting the dopant atoms gives a more 

universal picture of strain effects for a given B-site cation. Nevertheless, measuring the strain 

effects on a variety of explicitly doped supercells would be a valuable future addition to the 

complete dataset. In Table S7.2 and Figure S7.1 through Figure S7.6, we provide migration 

barrier data for strained supercells with three explicit Sr A-site doping configurations for B-site 

cations Sc, Cr, and Mn. Table S7.2 shows that, with the exception of in-plane hops for Mn, the 

slopes for the explicitly doped supercells fall within the +/- 25 meV/% strain range of slopes that 

we expect given all hops in a supercell (see Section S8). The difference in slopes for the in-plane 

doped Mn supercells, as well as their higher-than-average errors in fitting, can be attributed to 

the migration barrier values for compressive strained supercells which are higher than would be 

expected for an approximately linear trend. The underlying cause of these increased barriers 

requires further investigation. In any case, Table S7.2 and Figure S7.1 through Figure S7.6 show 

clearly that in both explicitly doped supercells and in electron-removal charge-compensated 

undoped supercells, oxygen migration barriers decrease with increasing tensile strain. 

S8.	  Jump	  Directions	  
The migration of two oxygen atoms in two particular directions are calculated for each of 

the systems. The two calculated migration barriers were chosen so that one hop is in-plane (O31 



13 
 

to O30; see Figure S2.1 for positions) and one hop is out-of-plane (O29 to O30). This choice is 

an approximation as there are in fact multiple symmetry-independent hops in the unit cell due to 

the non-cubic symmetry of the low-temperature perovskite phase and the symmetry breaking of 

the vacancy. The in-plane hop is described in the main text, while the out-of-plane hop is plotted 

in Figure S8.1, with fitted slope values in Table S8.1. The slope values for the selected consistent 

in-plane and out-of-plane hops are plotted together in Figure S8.2. This data suggests perhaps a 

slight trend for more negative slopes for out-of-plane hops but this effect is almost certainly just 

an artifact of the specific hops and systems chosen as different hops can have quite a wide spread 

of slopes (see discussion below in this section).  Figure S8.2 also shows that there is no clear 

trend in the slopes with the atomic number of the B-site cation. 

The total range of barriers for systems where we have calculated all of the symmetry 

distinct hops is less than 300 meV (Figure S8.3 and Figure S8.4). Table S8.2 shows additional 

data for eight hops in different systems, with a maximum range of 600 meV and an average 

range of 280 +/- 160 meV. However, each particular barrier from Figure S8.3 and Figure S8.4 

follows the same qualitative trend of decreasing with tensile strain that is seen for the barrier in 

the main text and the selected out-of-plane barrier, with representative examples given in Figure 

S8.5 and Figure S8.6. The range of the slopes of migration barriers for symmetry distinct hops in 

meV/% strain is some 50 to 70 meV/% strain from Figure S8.7 and Figure S8.8. While this range 

is large, all slopes for all barriers are decreasing slopes (we omit a single LaCrO3 barrier for 

octahedron 9, -2% strain which had an unusual and probably erroneous total magnetic moment). 

We also note that the value of the slope does not correspond to the magnitude of the zero-strain 

barrier, and neither out-of-plane nor in-plane slopes are consistently larger than the other. 

Furthermore, the range in slopes does not change the overall prediction pattern for elastic theory-
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based slope versus DFT-calculated slope (Figure 4 in the main text, compared with Figure S8.9). 

In fact, it is interesting to see that the different hops for a given B cation (Mn or Cr) have very 

similar slopes predicted from the simple strain model, which implies they have very similar 

migration volumes.  However, as noted above, these different hops have quite different slopes 

with strain predicted by DFT.  

 
Figure S8.3, Figure S8.4, Figure S8.7, and Figure S8.8 show that groups of similar barrier 

and slope patterns (central B-site cations 10, 12, 13, and 15 versus central B-site cations 9, 11, 

14, and 16) correspond to groups of octahedra which are similarly tilted around the b-axis 

(although not identically tilted in all respects), as can be seen from Figure S2.1.  

S9.	  Migration	  Barrier	  Emig	  and	  Relationship	  to	  Ionic	  Conductivity:	  
In this paper we focus on migration energies, Emig, but often wish to relate the to 

measured conductivities, particularly ionic conductivities.  The connection between these 

quantities is discussed here. 

Ionic conduction in perovskites is dominated by the movement of oxygen anions,21, 22 

while electronic conduction comes either from B-site cation electrons,23 or from hole conduction 

at high oxygen partial pressures.22 Significant effort is made to dope the perovskite A- and B-

sites in order to produce the desired amounts of electronic and ionic conduction. For example, 

the doping of 2+ A-site cations (call them species M) in the place of 3+ A-site cations produces 

2+-charged oxygen vacancies, as shown in Equation S9.1 and Equation S9.2:24 

 

𝐴!𝑂! + 𝐵!𝑂! = 2𝐴𝐵𝑂! (S9.1) 

2𝑀𝑂 𝐴!𝑂! = 2𝑀!
! + 𝑉!∙∙ + 2𝑂!! (S9.2) 
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Assuming that oxygen ions are the only mobile ionic species in the material, conductivity 

is given by Equation S9.3:21  

𝜎!"!#$ = 𝜎!"!#$%&'(# + 𝜎!"#$%&  !"#$ (S9.3) 

 

The assumption that oxygen ions are the only diffusing ions is reasonable for the 

perovskite system, especially in the context of the major intended uses. For example, SOFC 

operation depends on the adsorption and separation of gaseous oxygen, its motion as oxygen 

anions through the device, and the eventual recombination of those oxygen anions with hydrogen 

on the fuel side into water. In contrast, cations do not enjoy a large concentration of cation 

vacancies tailored by doping (cation doping produces anion vacancies), nor do they have a 

similar chemical reaction pathway that encourages unidirectional motion and keeps a supply of 

cations available. Furthermore, cation migration barriers are typically ~2.5-3 eV, making them 

far less mobile than oxygen.25, 26 Massive cation motion may also imply phase segregation or 

material failure in the context of SOFCs. 

Looking only at ionic conductivity, the ionic conductivity may be described through 

Equation S9.4, where η or C is the concentration of each species of charge-carrying ion, q is the 

charge on each ion, and µ is the mobility of each ion; assuming only the motion of oxygen ions, 

the summation only contains one term:27  

𝜎!"#!" = 𝜂!𝑞!𝜇!
!

= 𝐶!𝑞!𝜇! (S9.4) 

 

The Nernst-Einstein equation relates mobility to the diffusion coefficient D and changes 

the conductivity expression to Equation S9.5, where k is the Boltzmann constant and T is 

temperature, and the subscript O is used for oxygen anions, O2-:23 
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𝜎!"#!$ = 𝐶!𝑞!𝜇! =
𝐶!𝑞!!𝐷!
𝑘𝑇 =

𝐶!𝑞!!𝐷!
𝑘𝑇  (S9.5) 

 

When an oxygen ion moves, it swaps spots with an oxygen vacancy. The diffusion 

coefficient for oxygen ions, DO, can be related to the diffusion coefficient for oxygen vacancies, 

Dv, through their relative concentrations C in Equation S9.6:28  

𝐷! = 𝐷!
𝐶!
𝐶!

 (S9.6) 

 

Substituting in the expression for DO and recognizing that the square of the 2- charge on 

an oxygen anion is equivalent to the square of the 2+ charge on an oxygen vacancy, or 𝑞!! = 𝑞!!, 

gives Equation S9.7, 

𝜎!"#!$ =
𝐶!𝑞!!𝐷!
𝑘𝑇 =

𝐶!𝑞!!𝐷!𝐶!
𝑘𝑇𝐶!

=
𝐶!𝑞!!𝐷!
𝑘𝑇 =

𝐶!𝑞!!𝐷!
𝑘𝑇  (S9.7) 

 

 

or, alternatively, Equation S9.8,  

𝜎!"#!$ = 𝐶!𝑞!𝜇! =
𝐶!𝑞!!𝐷!
𝑘𝑇  (S9.8) 

 

Vacancy concentration and vacancy diffusion are both thermally-activated and may often 

be at least approximately expressed as functions of temperature in Equation S9.9, Equation 

S9.10, and Equation S9.11, where γ is a geometric factor, a is the jump distance, and ν0 is the 

vibrational frequency of the moving ion, the subscript “mig” stands for migration, and the 

subscript “form” stands for vacancy formation:23  
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𝐷! = 𝛾𝑎!𝜈! exp
−𝐺!"#
𝑘𝑇  (S9.9) 

𝐷! = 𝛾𝑎!𝜈! exp
𝑇𝑆!"#
𝑘𝑇 exp

−𝐻!"#
𝑘𝑇  (S9.10) 

𝐷! = 𝐷!! exp
−𝐻!"#
𝑘𝑇  (S9.11) 

 

(Here we use Gmig, Emig, etc. as the Gibbs free energy and internal energy of migration; often they 

are also termed ΔGmig or ΔEmig to signify the change in energy during migration. However, since 

we are treating slopes in migration energy with respect to strain, or changes in change-of-energy-

during-migration, we use Emig for the migration barrier energy, and ΔEmig for the change in that 

migration barrier quantity, as with respect to strain.)  

 We will assume that for a perovskite doped for some practical purpose, the vacancy 

concentration comes primarily from aliovalent doping rather than from thermal activation, with 

thermal activation playing only a small part for vacancy formation energies between 2.4 and 5 

eV.3, 29 For example, for commercial LSGM (La0.80Sr0.20Ga0.80Mg0.20O3-x),30 the nominal vacancy 

concentration is 1 vacancy per two Strontium substitutions, or 0.1 per formula unit. Given a 

calculated LaGaO3 volume of 488 Å3 for 8 formula units, this is 8*0.1 = 0.8 vacancies, or a 

vacancy concentration Cv of (0.8/488Å3).  In order to obtain this vacancy concentration from a 

purely thermally-activated process with a relatively low Hvf of 3 eV, the initial vacancy 

concentration Cv0 would have to be thousands of vacancies/Å3 at temperatures of 1173K or 

lower. However, for some systems the vacancy concentration will be dominated by thermally 

generated vacancies and the strain response of the diffusion and ionic conductivity may be 

strongly influenced by changes in 𝐻!"#$ with strain. We do not include these effects in the 

present work but they are an important area for further study. 
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 Substituting in the temperature-dependent expression for Dv in Equation S9.11 to the 

formula for ionic conductivity in Equation S9.8 gives Equation S9.12:  

𝜎!"#!$ =
𝑞!!

𝑘𝑇 𝐶!𝐷!! exp
−𝐻!"#
𝑘𝑇  (S9.12) 

 

Across two strains at a given temperature, the ionic conductivities may be compared as in 

Equation S9.13. Assuming that Cv at strain 1 is similar to Cv at strain 2, we arrive at Equation 

S9.14: 

𝜎!"#!$,!!
𝜎!"#!$,!!

=
𝑞!!
𝑘𝑇 𝐶!,!!
𝑞!!
𝑘𝑇 𝐶!,!!

×
𝐷!!,!! exp

−𝐻!"#,!!
𝑘𝑇

𝐷!!,!! exp
−𝐻!"#,!!
𝑘𝑇

 
(S9.13) 
  

𝜎!"#!$,!!
𝜎!"#!$,!!

≈
𝐷!!,!!
𝐷!!,!!

exp
−𝐻!"#,!!+𝐻!"#,!!

𝑘𝑇  (S9.14) 

  

 

We recognize that Dv0 has contributions from geometric factors, a correlation term, and 

phonons. Phonons are likely to be only weakly dependent on strain,31 the correlation term is 

constant for dilute vacancies, and the overall geometric factors for the cell should be similar for 

small strains. These assumptions yield Equation S9.15, giving the ratio of ionic conductivities at 

different strains.  The assumption that Cv is independent of strain is likely not true in general, and 

Equation S9.14 and Equation S9.15 should be taken as limiting cases which include only the 

strain effect through migration energies without contributions from changes in vacancy content.  

However, we note that for doped perovskites, as are often used in oxygen conducting 

applications, the vacancy concentration is largely controlled by dopant concentration and not 
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defect formation enthalpies.  Under these quite common circumstances we do expect the vacncy 

concentration to have only a weak dependence on strain. 

 

𝜎!"#!$,!!
𝜎!"!"#,!!

≈ exp
−𝐻!"#,!!+𝐻!"#,!!

𝑘𝑇  (S9.15) 

 

 At a given temperature, making the assumption that all other quantities stay equal, 

Equation S9.15 makes it straightforward to relate changes in Hmig to changes in conductivity. To 

translate experimental or literature data giving trends in σionic into a comparable slope value of 

ΔHmig/%strain we simply invert Equation S9.15 and divide the changes in Hmig by the changes in 

strain to produce a slope. We report and compare these slopes directly to our calculated 

ΔEmig/%strain slopes.  We justify the equivalence of the experimental constant-pressure strained 

migration enthalpies Hmig and our calculated constant-volume strained migration barriers Emig in 

Section S9a, Section S9b, and Section S9c below. 

S9a.	  Relating	  Hmig	  at	  Constant	  Pressure	  and	  Emig	  at	  Constant	  Volume,	  for	  Unstrained	  and	  
Strained	  Cases	  	  
 

 The following derivation will show that what is calculated with DFT, which is Emig at 

constant volume per formula unit v’, is approximately equivalent to Hmig at constant pressure P’. 

Suppose a diffusion experiment is run at some pressure P’ and temperature T. Making the 

assumptions described in Section 9 above in order to relate conductivities, we extract out a Hmig 

at pressure P’. This pressure P’ is consistent from the initial defected state through the transition 

state to the final defected state. The initial defected state has a volume of v’ per formula unit, or a 

total volume of Vol=Nv’=V’, where N is the number of formula units. The transition state has a 
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slightly different volume (in order to stay at pressure P’), which we define as Vtst =Nv’ + 

Vmig(P’)=V’ + Vmig(P’), where Vmig(P’) is the volume change associated with the atomic 

migration at pressure P’. 

Now suppose we have a migration barrier calculation whose initial defected state is set to 

that same pressure P’ with the characteristic per-formula-unit volume v’, or total volume Nv’, for 

the same number of formula units as in the experiment (although practically speaking this would 

not be the case). For better convergence in the CNEB calculation, we fix the volume rather than 

the pressure, so that the transition state remains at constant volume Nv’, but its pressure 

increases.  

We define two internal energies as functions of different variables: internal energy E as a 

function of volume V, and internal energy U as function of pressure P. Note that here U is not the 

finite temperature internal energy, but still the zero-temperature internal energy equivalent to E 

but written as a function of pressure. Then we define the migration energy as the transition state 

energy, Etst or Utst, minus the energy of the initial defected state when the oxygen (or vacancy) is 

on the lattice site, Eol or Uol, in Equation S9a.1 and Equation S9a.2. Note that because we are in a 

finite size supercell which can impact our results we explicitly keep N as an independent 

variable. 

The transition state energy can be split into a bulk-like term and a term associated with 

the transitioning atom (here, a single oxygen) and its surrounding atomic relaxations. The bulk-

like term is an energy component that scales linearly with the number of formula units N. The 

term associated with the transitioning atom and its surrounding atomic relaxations, on the other 

hand, does not depend on the number of formula units N for large N. For very few formula units, 

this local energy term may be affected by the supercell size, but as the calculation supercell gets 
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larger, the local energy term converges to an asymptotic value. This dependence yields S9a.3 for 

all N, and S9a.4 for N large enough that E1 has reached its asympotic value.  We note that 𝜀! is 

just the energy per formula unit of the host system, here the undefected perovksite. 

𝐸!"# 𝑉,𝑁 = 𝐸!"! 𝑉,𝑁 − 𝐸!" 𝑉,𝑁  (S9a.1) 

𝑈!"# 𝑃,𝑁 = 𝑈!"! 𝑃,𝑁 − 𝑈!" 𝑃,𝑁  (S9a.2) 

𝐸!"! 𝑉,𝑁 = 𝑁𝜀! 𝑣 + 𝐸! 𝑉,𝑁  (S9a.3) 

𝐸!"! 𝑣,𝑁 = 𝑁𝜀! 𝑣 + 𝐸! 𝑣   (𝑖𝑛  𝑙𝑎𝑟𝑔𝑒  𝑁  𝑙𝑖𝑚𝑖𝑡) (S9a.4) 

 

As we will from here forward be considering only cases where N is large enough that 

Equation S9a.4 holds and is otherwise fixed, we will not explicitly write the dependence on N in 

the following equations except when it is needed for clarity. Using the definition of enthalpy, 

Hmig(P’) can be written as Equation S9a.5 Using the definition of migration energy, Hmig(P’) can 

be further split into Equation S9a.6. 

 Now we make two major substitutions, changing the energy definition in the enthalpy 

from an energy U as a function of pressure P to an energy E as function of volume V. First, for 

the on-lattice energy, the on-lattice pressure P’ was defined as having a corresponding volume 

V’, so we substitute the energy Eol(V’) for the energy Uol(P’) (since they are the same value), 

giving Equation S9a.7. Second, for the transition-state energy, the transition state pressure P’ 

was defined as having corresponding transition state volume Vtst =V’ + Vmig(P’). Therefore, we 

substitute the energy Etst(V’+Vmig(P’)) for the energy Utst(P’), to give Equation S9a.8.  

𝐻!"# 𝑃! = 𝑈!"# 𝑃! + 𝑃!𝑉!"# 𝑃!  (S9a.5) 

𝐻!"# 𝑃! = 𝑈!"! 𝑃! − 𝑈!" 𝑃! + 𝑃!𝑉!"# 𝑃!  (S9a.6) 
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𝐻!"# 𝑃! = 𝑈!"! 𝑃! − 𝐸!" 𝑉! + 𝑃!𝑉!"# 𝑃!  (S9a.7) 

𝐻!"# 𝑃! = 𝐸!"! 𝑉! + 𝑉!"# 𝑃! − 𝐸!" 𝑉! + 𝑃!𝑉!"# 𝑃!  (S9a.8) 

 
 
 
In Equation S9a.9, we Taylor expand the Etst term.  

 

𝐸!"! 𝑉! + 𝑉!"# 𝑃!

= 𝐸!"! 𝑉! + 𝑉!"# 𝑃!
𝑑𝐸!"!(𝑉)
𝑑𝑉 !!

+
1
2! 𝑉!"# 𝑃

!
! 𝑑!𝐸!"!(𝑉)

𝑑𝑉!
!!

+⋯ 

(S9a.9) 

 

Using the implication of Equation S9a.4 that Etst is a function of only N and v, and noting that at 

fixed N, !
!"
= !

!
!
!"

, Equation S9a.9 can be rewritten as Equation S9a.10. 

 

𝐸!"!
𝑉! + 𝑉!"# 𝑃!

𝑁 ,𝑁

= 𝐸!"! 𝑣!,𝑁 + 𝑉!"# 𝑃!
𝑑𝐸!"!(𝑣!,𝑁)

𝑁𝑑𝑣′
!!

+
1
2! 𝑉!"# 𝑃

!
! 𝑑!𝐸!"!(𝑣!,𝑁)

𝑁!𝑑𝑣′!
!!
+⋯ 

(S9a.10) 

Now susbtituting in Equation S9a.4 for Etst and dropping terms of O(1/N) and higher powers of 

1/N gives Equation S9a.11. 

 

𝐸!"!
𝑉! + 𝑉!"# 𝑃!

𝑁 ,𝑁 = 𝐸!"! 𝑣!,𝑁 + 𝑉!"# 𝑃!
𝑑𝜀! 𝑣!

𝑑𝑣!
!!

 
(S9a.11) 
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= 𝐸!"! 𝑣!,𝑁 − 𝑃′𝑉!"# 𝑃!  

 

Here we have defined used the fact that, as 𝜀!is the bulk system energy per formula unit, its 

volume per formula unit derivative is just the negative pressure.   Equation S9a.11 can be 

rewritten in terms of our total volumes as Equation S9a.12. 

𝐸!"! 𝑉! + 𝑉!"# 𝑃! = 𝐸!"! 𝑉′ − 𝑃′𝑉!"# 𝑃!  (S9a.12) 

 

Substituting Equation S9a.12 into Equation S9a.8 yields Equation S9a.13, Equation S9a.14, and 

Equation S9a.15.. 

𝐻!"# 𝑃! = 𝐸!"! 𝑉′ − 𝑃!𝑉!"# 𝑃! − 𝐸!" 𝑉! + 𝑃!𝑉!"# 𝑃!  (S9a.13) 

𝐻!"# 𝑃! = 𝐸!"! 𝑣!,𝑁 − 𝐸!" 𝑉!  (S9a.14) 

𝐻!"# 𝑃! = 𝐸!"# 𝑉!  (S9a.15) 

 

We reiterate that the above only holds for large enough N that we can use Equation S9a.4 

and drop terms of O(1/N) in the Taylor expansion in Equation S9a.10.  With this result, we see 

that constant-volume migration barrier energies for a large enough supercell size can be used to 

approximate the values for constant-pressure enthalpies, assuming low temperature.  

Note that the above derivation directly applies only for an isotropic system.  However, in 

the general case one may have a migrating atom with an isotropic migration volume tensor and 

under mixed boundary coundiation, with some components at fixed strain and others at fixed 

stress.  One can again ask the question whether the correct migration free energy (at low 

temperature) under the mixed boundary conditions is well represented by a fixed volume (and  

with fixed lattice vectors) ab inito calculated energy difference.  The above derivation readily 
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generalizes to this more complex situation, as each 𝜎!"𝜖!"   component of the migration energetics 

can be treated independently.  If the migration is at fixed 𝜖!" then the calculation is being done at 

directly comparable boundary conditions.  If the migration is at fixed 𝜎!" then the calculation is 

approximately correct through an argument parallel to that above for the specific ij component.  

 

S9b.	  Approximating	  the	  Defected	  Volume	  with	  the	  Undefected	  Volume	  

	  
In Section S9a we assumed that the starting pressure and volume for the calculations 

were P’ and V’, respectively, which is the volume for the defected supercell. However, the 

starting volume in our calculations is really V0, the volume of the undefected supercell, or rather 

𝑉! with strain, where we use the bar over the variable to represent its value in our strained 

calculations. Therefore, the starting pressure is some 𝑃! which is then modified by the effects of 

introducing a vacancy, and at volume 𝑉! rather than 𝑉′, the starting pressure is not exactly 𝑃’. 

That said, with large enough cells (enough formula units N), these differences in volume and 

pressure diminish, as there is only one vacancy being introduced in a background of many 

formula units N, so the derivations in Section S9a still hold.  

 

Through all of Section S9a and Section S9b we mention “large enough” formula units N. 

Our supercell sizes at an undefected supercell of 40 atoms or N=8 are not large enough for the 

approximations to become equalities within the limits of precision. However, we show in Table 

S12.1 (Section S12) that our values using migration energies are comparable with expected strain 

model values using isotropic pressures and volumes, even with our various assumptions, 
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approximations, and distinctions (e.g. in starting pressures and volumes), and even at our 

relatively small N=8. 

S10.	  Straining	  Supercells	  
Strains along lattice vectors a and b were taken at ±1% and ±2% of the original lattice 

parameters, with positive values as tensile strain and negative values as compressive strain (for 

example, tensile strain of +2% would strain the lattice parameter to 1.02 times the original lattice 

parameter and a compressive strain of -2% would strain the lattice parameter to 0.98 times the 

original lattice parameter). Lattice mismatch strains of up to ~7 percent have been reported, 

although thin films may not allow as much strain, and strain may produce segregated phases.32-34  

For each strain case (with lattice vectors a and b having equal fixed strains), the response 

in lattice parameter c, and therefore also the strained volume, was found by fitting a cubic 

function to the energies of a series of bulk calculations with different lattice vector c strains. At 

least seven lattice vector c strains were calculated to produce data points for the fit, in 1% steps 

in a range about 3% above and 3% below the estimated lattice vector c strain value, which from 

experience was known to be somewhat smaller than that given by a volume-conserving response. 

Each strain case consisted of a low kpoint-mesh (2x2x2 M) initial internal optimization, a 4x4x4 

M kpoint-mesh internal optimization, and a static calculation, all at fixed volume (once the strain 

had been applied) and cell shape. Additional lattice vector c points were calculated as 

neccessary, for example, in order to distinguish between two distinct magnetic moment curves 

with B-cations Fe, Co, and Ni, and to choose only those points on a curve consistent with the 

magnetic moment trending near the volumetrically-likely lattice vector c strain (see Figure 

S10.1). To further explore the trends of c axis with strain, the lattice vector c strains were plotted 

against the lattice vector a and b strains. Fine-gridding of LaCrO3 showed that such a plot is a 
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smooth curve, fitting well to a quadratic function (see Figure S10.2). The fitted minimum-energy 

lattice vector c strain for each biaxial strain case was subsequently used, along with the strained 

lattice vectors a and b, to fix the volume and cell shape in all further calculations for that strain 

case and chemical system. Note that 0% strain was also subjected to the same fitting treatment, 

and we found that in most cases, 0% strain in lattice vectors a and b did not, in fact, correspond 

to 0% strain in lattice vector c but rather to a magnitude of 0.3% strain or lower, indicating small 

convergence errors in the original groundstate calculations. 

 
We note that the total volume of a system could vary by as much as 5% among different 

strain states due to different equilibrium c lattice parameter values. 

Each undefected strain state bulk was allowed to relax only internally, and then the 

endpoint and NEB calculations proceeded as outlined in Section S2 through Section S7. 

Occasionally, for systems B=V, Fe, Ni, where we were interested in checking apparent 

deviations from a linear slope in Emig with strain, more fine-gridded strains in a and b lattice 

parameters were evaluated, using a lattice parameter c based on the quadratic fit of c vs. strain in 

a. Also, some systems' defected endpoints and NEB images were started over using the 

fractional coordinates of the same system at a different strain to explore for metastable solutions. 

In these cases, the lowest-energy activated state energy, which corresponds to the lowest-energy 

barrier (since the endpoints remained the same), was taken to calculate the barrier. The finely 

gridded B=Cr system shows that for a well-behaved system, migration barrier versus strain falls 

along a smooth line (see B=Cr case in Figure 1 in the main text).  

Outlier points occasionally exhibited some sort of polymorphic distortion, e.g. when 

comparing middle images among strain cases, an O-B-O bond angle for LaVO3 suddenly 

changed its sign at the zero-strain case and then back again, rather than changing gradually with 
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increasing tensile strain. An NEB calculation for LaVO3 restarting with randomly perturbed 

images found a very close energy (within 0.005 eV per 8 formula units) defected structure with a 

completely different and rotated octahedron tilt configuration, although the oxygen vacancy 

remained in the same place. The Generalized Gradient Approximation (GGA) method used in 

this work (see Section S5) may also lead to unstable magnetic moments; for example, our GGA 

LaFeO3, LaNiO3, and LaCoO3 systems showed different magnetic moments under different 

strain states (with a fluctuation of 0.35, 0.3, and 0.4 µB per Fe, Ni, and Co). Fixing magnetic 

moments could be arbitrary (for example, the magnetic moment for Ni in LaNiO3 in GGA could 

vary between 0 and 0.4 µB per Ni across all strain cases, up to 0.3 µB per Ni within a single 

strain case, and up to 0.3 µB per Ni within a single NEB), and changes in magnetic moment 

profiles of NEBs from one strain case to another or between two NEBs of the same strain cases 

may also be a function of polymorphism. Total convergence among polymorphs and magnetic 

moments appears to be quite challenging and was not necessary to illustrate the clear overall 

trends we observe here, so we do not discuss them further in this paper. 

S11.	  Fitting	  and	  Error	  Analysis	  
For linear and quadratic fits, error analysis was derived from Hocking35 as follows: 

Our input variables are assumed to have no error, as they are set deliberately to a certain 

value (e.g. epitaxial strain, or system volume). These inputs correspond to the x-vector in 

Hocking’s treatment, column vector [x1; x2; ...; xN]. Our output variables, like migration barrier 

and pressure, correspond to the y-vector. 

For a fit where the output axis intercept will be one of the fitting coefficients (e.g. there 

will be a +constant term at the end), we use X-matrices for linear and quadratic fits, as in 

Equation S11.1: 
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𝑋 = 𝐽𝑥   𝑜𝑟   𝐽𝑥𝑥!      (S11.1) 

 

where vector J is a column vector of ones.  In this notation 𝑎𝑏 represents an N×2 matrix 

with the first column consisting of the N×1 vector  𝑎 and the second column consisting of the 

N×1 vector 𝑏. 

For a fit where the output axis intercept (e.g. y-intercept) is set to zero, we use the 

following X-matrices for linear and quadratic fits, as in Equation S11.2: 

𝑋 = 𝑥   𝑜𝑟   𝑥𝑥!        (S11.2) 

 

The coefficient matrix β, with the lowest-order coefficient appearing as the top-most 

element, is found in Equation S11.3: 

𝛽 = 𝑋!𝑋 !!𝑋!𝑦   (S11.3) 

 

The “hat” matrix H is given in Equation S11.4: 

𝐻 = 𝑋 𝑋!𝑋 !!𝑋!    (S11.4) 

 

The estimated standard deviation, squared, is given in Equation (S11.5): 

𝑠! =
𝜎!𝜒! 𝑁 − 𝑝

𝑁 − 𝑝 ≈
𝑅𝑆𝑆
𝑁 − 𝑝 =

𝑅𝑆𝑆
𝑟𝑎𝑛𝑘(𝐼 − 𝐻)  

(S11.5) 
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where I is an appropriately-sized identity matrix, N is the sample size (number of input, 

output pairs), and RSS is the residual sum of squares, defined below in Equation (S11.6) and 

Equation (S11.7) the residual ri is the difference between the observed and estimated value of the 

output. Note that when using Python’s numpy package, the method numpy.linalg.matrix_rank 

should be used to calculate rank(I-H), rather than using numpy.rank. 

𝑅𝑆𝑆 = 𝑟!!
!

!!!

  
(S11.6) 

𝑟! = 𝑦! − 𝑦!    (S11.7) 

 

The variance and therefore standard error in the coefficients themselves is given in vector 

form in Equation (S11.8): 

𝑣𝑎𝑟 𝛽! = 𝑠𝑡𝑑  𝑒𝑟𝑟𝑜𝑟𝑠! = 𝑑𝑖𝑎𝑔 𝑋!𝑋 !! ∗ 𝑠!   (S11.8) 

 

Explicitly, for the DFT-fitted slopes, the standard error therefore works out to Equation 

S11.9, where the standard error in the slope, sβ1, is given as a function of the residual sum of 

squares Σri
2 and the sum of input squares, where xi are the input percent strains  (e.g. “-2”): 

𝑠!! =
1

𝑁 − 2 𝑟!!!
!!!

𝑥! − 𝑥 !!
!!!

  

(S11.9) 
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S12.	  Elastic	  Strain	  Model	  
We make extensive comparison to the simple elastic model proposed by Schichtel et al., 34 which 

relates strain and pressure as in Equation S12.1: 

𝑝 = −
2
3

𝑌
1− 𝜈 𝜖!" (S12.1) 

 

Here ϵ12 is biaxial strain, Y is the Young’s modulus, ν is the Poisson’s ratio, and p is the resulting 

pressure. At zero strain, the pressure is zero, so p can also be given as the change in pressure due 

to strain, where Δ𝑝 = 𝑝 − 0. Therefore, at fixed temperature and for an unchanging number of 

particles, a change in migration Gibbs free energy due to pressure goes as Equation S12.2 and 

Equation S12.3, assuming that migration volume Vmig changes little at different strains (an 

assumption which is supported by our data in Table S12.1): 

Δ𝐺!"# = V!"#Δ𝑝 = −
2
3

𝑌
1− 𝜈 𝜖!"𝑉!"# (S12.2) 

Δ𝐺!"#
𝜖!"

= −
2
3

𝑌
1− 𝜈 𝑉!"# (S12.3) 

 

Rearranging Equation S12.2 gives ΔGmig/Δp = Vmig, for a fixed-pressure, constant temperature 

system for a given strain case. As in Section S9, our calculated Emig, which are done at fixed 

volume at each strain case, can be thought of as equivalent to Gmig, giving Equation S12.4 for the 

predicted results from the Schichtel model for our calculated slopes.  

 

Δ𝐸!"#
ϵ!"

= −
2
3

𝑌
1− 𝜈 𝑉!"# (S12.4) 
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 Table S12.1 shows, first, that the perfect strained cell pressures are similar to those 

expected from Equation S12.1 and, second, that were we to take a fixed strained pressure and a 

fit-calculated migration volume (Section S12d), we would arrive at a ΔGmig value similar to that 

predicted by Equation S12.2 and also similar to our directly-calculated ΔEmig values. 

The comparison in the text shows that there are a number of quantitative discrepancies 

between predictions from this strain model and the migration energy slopes calculated directly 

with ab initio methods. 

S12a.	  Finding	  ν	  for	  Use	  in	  the	  Elastic	  Model	  
For a linearly elastic isotropic material, the strain energy density U is given in Equation 

S12a.1, where the principal axes are denoted by subscripts 1, 2, and 3.36  

𝑈 =   
1
2 𝜆 𝜖! + 𝜖! + 𝜖!

! +   𝐺 𝜖!! + 𝜖!! + 𝜖!!  (S12a.1) 

 

The elastic constants λ and G can be written in terms of the Poisson’s ratio ν and Young’s 

modulus Y of the material (given as E in the reference text), in Equation S12a.2 and Equation 

S12a.3, which may be substituted into Equation S12a.1 to give Equation S12a.4. 

𝜆 =
𝜈𝑌

1+ 𝜈 (1− 2𝜈) 
(S12a.2) 

𝐺 =
𝑌

2(1+ 𝜈) 
(S12a.3) 

𝑈 =   
𝜈𝑌

2 1+ 𝜈 (1− 2𝜈) 𝜖! + 𝜖! + 𝜖! ! +   
𝑌

2(1+ 𝜈) 𝜖!! + 𝜖!! + 𝜖!!  (S12a.4) 
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Using є1 = є2 for biaxial strain, є3 is obtained from the lattice vector c fitting, and is not 

equal to zero, as the cases discussed here are for the thin-film plane stress case, rather than for a 

plane strain case.  

 The strain energy density U is the change in energy due to strain, per unit volume when 

strained, and was defined as in Equation S12a.5: 

𝑈 =
𝐸!"#$%&'(
!"#$  !"#$%&$'' − 𝐸!"#$%&'"()

!"#$  !"#$%&$''

𝑉!"#$%&'(
!"#$  !"#$%&$''  (S12a.5) 

  

 

In principle, it is possible to perform a nonlinear fit using the strain and strain energy data 

in order to find λ and G or Y and ν. However, in practice, such fitting produced unreasonable 

negative Poisson’s ratios and was in general badly determined, with large ranges of constant 

pairs that had very similar root-mean-squared errors.  

Instead, we use the plane-stress approximation to calculate a Poisson’s ratio ν from our 

data, then use the Poisson’s ratio and the bulk modulus to calculate the Young’s modulus Y. 

From Barber, we obtain Equation S12a.6, Equation S12a.7, and Equation S12a.8 for the plane-

stress case (σzz=0), where E is the Young’s modulus.37 Given that ϵxx  and  ϵyy  are  identical  for  

our  cells,  and  taking  the  approximation  that  σxx  and  σyy   for  our  near-‐cubic  cells  are  also  

equal,  we  derive  Equation  S12a.9  through  Equation  S12a.15.  

      

𝜖!! =
−𝜈
𝐸 𝜎!! + 𝜎!!    (S12a.6) 

𝜖!! =
𝜎!!
𝐸 −

𝜈𝜎!!
𝐸    (S12a.7) 

𝜖!! =
𝜎!!
𝐸 −

𝜈𝜎!!
𝐸    (S12a.8) 
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𝜖!! = 𝜖!! =
𝜎!!
𝐸 −

𝜈𝜎!!
𝐸 =

𝜎!!
𝐸 −

𝜈𝜎!!
𝐸    (S12a.9) 

𝜖!! =
1− 𝜈 𝜎!!

𝐸    (S12a.10) 

𝜎!! =
𝐸𝜖!!
1− 𝜈   

(S12a.11) 

𝜖!! =
−2𝜈𝜎!!
𝐸    (S12a.12) 

𝜖!! =
−2𝜈𝐸𝜖!!
𝐸 1− 𝜈   

(S12a.13) 

𝜖!!
𝜖!!

=
−2𝜈
1− 𝜈   

(S12a.14) 

    

𝜈 =

𝜖!!
𝜖!!

𝜖!!
𝜖!!

− 2
=

𝜖!
𝜖!

𝜖!
𝜖!
− 2

  
(S12a.15) 

 

Using the definition of engineering strain as ΔL/L,38 and noting that our zero-strain 

fractions are 1 for lattice vectors a and b, but usually slightly over 1 for lattice vector c due to 

fitting (explained in Section S10, Straining supercells, e.g. 1.003), we take strains from Equation 

S12a.16 through Equation S12a.18, where “strain fraction” is the strain fraction multiplier, e.g. 1, 

1.02, 0.99, etc.) 

𝜖! =
𝑠𝑡𝑟𝑎𝑖𝑛  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑎 − 1 ∗ 𝑎

𝑎 = 𝑠𝑡𝑟𝑎𝑖𝑛  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑎 − 1 (S12a.16) 

𝜖! =
𝑠𝑡𝑟𝑎𝑖𝑛  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑐 − 𝑧𝑒𝑟𝑜  𝑠𝑡𝑟𝑎𝑖𝑛  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑐 ∗ 𝑐

𝑐  (S12a.17) 

𝜖! = 𝑠𝑡𝑟𝑎𝑖𝑛  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑐 − 𝑧𝑒𝑟𝑜  𝑠𝑡𝑟𝑎𝑖𝑛  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑐 (S12a.18) 
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These normalized ϵc values were fit against the ϵa values to produce a quadratic fit, 

Equation S12a.19. Because zero strain in a should produce zero strain in c by definition (and 

from the normalization in Equation S12a.18, the intercept g in Equation S12a.19 is set as zero. 

Substituting Equation S12a.19 into our Equation S12a.15 for Poisson’s ratio produces Equation 

S12a.20. 

𝜖! = 𝑑𝜖!! + 𝑓𝜖! + 𝑔 =   𝑑𝜖!! + 𝑓𝜖! (S12a.19) 

𝑣 =

𝜖!
𝜖!

𝜖!
𝜖!
− 2

=
𝜖!

𝜖! − 2𝜖!
=

𝑑𝜖!! + 𝑓𝜖!
𝑑𝜖!! + 𝑓𝜖! − 2𝜖!

=
𝑑𝜖! + 𝑓

𝑑𝜖! + (𝑓 − 2)
 

(S12a.20) 

 

To take ν as a material constant defined at small strains, we take ν in the limit as ϵa goes 

to zero and arrive at Equation S12a.21 (remember that here, f is just the first-order coefficient of 

the fit of ϵc as a function of ϵa), with error defined in Equation S12a.22 and Equation S12a.23.  

𝑣 =
𝑓

𝑓 − 2 (S12a.21) 

𝜎!
𝜈 =

𝜎!
𝑓

!
+

𝜎!
𝑓

!
 

(S12a.22) 

𝜎! = 𝜈
𝜎!
𝑓 2 (S12a.23) 

 

σf is the first element of the matrix in Equation S12a.24 and the X matrix is defined in Equation 

S12a.25. (There is no J-vector of ones, since the intercept is set to (0,0).) 

 

𝑑𝑖𝑎𝑔 𝑋!𝑋 !! ∗
𝑅𝑆𝑆  𝑜𝑓  𝜖!(𝜖!)

𝑟𝑎𝑛𝑘(𝐼 − 𝐻  𝑜𝑓  𝜖!(𝜖!))
 (S12a.24) 
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𝑋 = 𝜖!  𝜖!!    (S12a.25) 

 

 The calculated Poisson’s ratio values are given in Table S12.2. It is possible that the 

introduction of an oxygen vacancy may change the Poisson’s ratio for the 2x2x2 simulation 

supercells. However, this effect has not been included in the present calculations. We use the 

Poisson’s ratio calculated from perfect cells as a materials constant and do not include effects of 

the vacancy. 

S12b.	  Finding	  the	  Bulk	  Modulus	  (for	  Y	  and	  Vmig)	  	  
 Finding the bulk modulus was necessary for calculating the Young’s modulus Y and the 

migration volume Vmig. In order to calculate the bulk modulus B0 and the derivative of the bulk 

modulus, B0’, for each system, nine pressure-volume pairs of the perfect bulk were calculated for 

each system. Each pressure-volume point was a static calculation at a different volume, where 

the volume was equally strained along each lattice vector a, b, and c, starting at 5% compressive 

strain and increasing in increments of 1% to 3% tensile strain.  In the following fitting we found 

that the direct fit to a Birch-Murnaghan equation was numerically unstable and gave results very 

sensitive to the initial values chosen in the optimization.  Therefore, we have first fit to a cubic 

equation and then used the results of that fit to obtain the parameters for the Birch-Murnaghan 

equation. 

 The nine points were easily fit to a well-matching cubic equation for each system, 

producing V(P) (see Figure S12.1). The coefficients of the cubic fit were then used to derive the 

bulk modulus, B0, and its derivative, B0’, as shown in Equation S12b.1 through Equation 

S12b.14: 
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𝐵! = −𝑉
𝜕𝑃
𝜕𝑉 !!!

 (S12b.1) 

𝐵 = −𝑉
𝜕𝑃
𝜕𝑉  (S12b.2) 

𝐵 =
−𝑉
𝜕𝑉
𝜕𝑃

 (S12b.3) 

𝑉 𝑃 = 𝑗𝑃! + 𝑘𝑃! + 𝑙𝑃 +𝑚, 𝑗, 𝑘, 𝑙,𝑚 ∈ ℝ (S12b.4) 

𝜕𝑉
𝜕𝑃 = 3𝑗𝑃! + 2𝑘𝑃 + 𝑙 (S12b.5) 

𝐵 =
−𝑉
𝜕𝑉
𝜕𝑃

=
− 𝑗𝑃! + 𝑘𝑃! + 𝑙𝑃 +𝑚

3𝑗𝑃! + 2𝑘𝑃 + 𝑙  (S12b.6) 

𝐵! =
−𝑉
𝜕𝑉
𝜕𝑃 !!!

=
− 0+ 0+ 0+𝑚

0+ 0+ 𝑙 =
−𝑚
𝑙  (S12b.7) 

𝐵! =
−𝑚
𝑙  (S12b.8) 

𝜎!! = 𝐵!
𝜎!
𝑚

!
+

𝜎!
𝑙

!
 

(S12b.9) 

𝐵!! =
𝜕𝐵
𝜕𝑃 !!!

=

−𝜕𝑉
𝜕𝑃

𝜕𝑉
𝜕𝑃 − 𝜕!𝑉

𝜕𝑃! −𝑉

𝜕𝑉
𝜕𝑃

𝜕𝑉
𝜕𝑃

= −1+
𝑉 𝜕!𝑉

𝜕𝑃!
𝜕𝑉
𝜕𝑃

𝜕𝑉
𝜕𝑃 !!!

 
(S12b.10) 

𝜕!𝑉
𝜕𝑃! = 6𝑗𝑃 + 2𝑘 (S12b.11) 

𝐵!! = −1+
𝑗𝑃! + 𝑘𝑃! + 𝑙𝑃 +𝑚 6𝑗𝑃 + 2𝑘
3𝑗𝑃! + 2𝑘𝑃 + 𝑙 3𝑗𝑃! + 2𝑘𝑃 + 𝑙

!!!
 (S12b.12) 

𝐵!! = −1+
0+ 0+ 0+𝑚 0+ 2𝑘
0+ 0+ 𝑙 0+ 0+ 𝑙  (S12b.13) 
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𝐵!! = −1+
2𝑚𝑘
𝑙!  (S12b.14) 

 

(Remember that k, l, and m are just real-valued coefficients.) 

The error in the coefficients j, k, l, and m can be approximated as the fourth, third, second, and 

first elements, respectively, of the matrix in Equation S12b.15, with the X-matrix given in 

Equation (S12b.16). The calculated bulk moduli and their errors are given in Table S12.3. 

𝑑𝑖𝑎𝑔 𝑋!𝑋 !! ∗
𝑅𝑆𝑆  𝑜𝑓  𝑉(𝑃)

𝑟𝑎𝑛𝑘(𝐼 − 𝐻  𝑜𝑓  𝑉(𝑃))  (S12b.15) 

𝑋 = 𝐽  𝑃  𝑃!  𝑃!  (S12b.16) 

	  
Although we calculated the bulk modulus for the undefected system, it is possible that it 

is altered by the specific state of the system during the calculation of the migration energies. As 

we wish to compare the strain model to the migration energy calculations such a change in bulk 

modulus could produce errors. In particular, vacancy concentration (presence or absence of the 

single vacancy), placement (initial or activated state), and compensation status (compensated 

using electron removal or uncompensated) can all have an effect on bulk modulus, as given in 

Table S12.4. The strain data is for compensated systems, so using bulk modulus in the presence 

of the compensated vacancy, the two check cases (B=Cr and B=Mn) indicate an increase in the 

bulk modulus and therefore in the Young’s modulus Y (using the Poisson’s ratio from Section 

S12a), prefactor, and magnitude of the calculated elastic model slope. The full elastic model 

could be redone with all bulk modulus calculations at the same vacancy concentration, 

placement, and compensation status as the migration barrier calculations, rather than using the 

undefected-cell bulk modulus. However, Figure S12.2 shows that including the effect of the 

vacancy on the bulk modulus, using the largest downward shift to the elastic model slope, still 

leaves significant error between the elastic model slopes and the DFT-fit slopes. The main 

conclusion remains that the elastic model provides a good qualitative, if not quantitative, 

description of the change in migration barrier versus strain.   
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S12c.	  Finding	  Y	  for	  Use	  in	  the	  Elastic	  Strain	  Model	  
Using our bulk modulus values, we calculate the Young’s modulus Y from Equation 

S12c.1.36 The error is given in Equation S12c.2. 

𝑌 = 3𝐵! 1− 2𝜈 = 3𝐵! − 6𝐵!𝜈 (S12c.1) 

𝜎!! = 3!𝜎!!
! + 6! 𝐵!𝜈 ! 𝜎!!

𝐵!

!
+

𝜎!
𝜈

!
 (S12c.2) 

 

Therefore, our prefactor for the elastic model is defined in Equation S12c.3, with error 

treatment in Equation S12c.4: 

𝑝𝑟𝑒𝑓𝑎𝑐𝑡𝑜𝑟 =   
−2𝑌

3(1− 𝜈) 
(S12c.3) 

𝑒𝑟𝑟𝑜𝑟  𝑖𝑛  𝑝𝑟𝑒𝑓𝑎𝑐𝑡𝑜𝑟 =   𝑝𝑟𝑒𝑓𝑎𝑐𝑡𝑜𝑟 ∗
𝜎!
𝑌

!
+

𝜎!
𝜈

!
 

(S12c.4) 

 

The calculated values for Young’s modulus and the prefactor are given in Table S12.2. 

 

S12d.	  Finding	  Migration	  Molume	  for	  Use	  in	  the	  Elastic	  Strain	  Model:	  
 The migration volume is defined as the change in volume of the system from the initial 

state to the activated state.  Calculation of the volume of the fully relaxed activated state through 

direction optimization is not possible without some method to constrain the reaction coordinate 

degrees of freedom, as the system is unstable in the activated state and will relax to its initial or 

final state.  We evaluated constrained relaxations, where only volume is allowed to relax, but felt 

that this approach may be inaccurate due to the many internal degrees of freedom that are 

constrained (this data is shown in Table S12.5). The CNEB method naturally constrains just the 
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reaction coordinate in the activated state but is implemented at fixed volume, and therefore does 

not allow relaxation of the activated state volume during the CNEB calculation.  To overcome 

this problem, for each system and each hop, at the initial state and at the activated state, we used 

the bulk modulus B0, its derivative with respect to pressure, B0’, the fixed volume V (common to 

the shared initial state and both activated states), and the pressure P at that fixed volume in the 

third-order Birch Murnaghan equation, Equation S12d.1, in order to calculate the expected zero-

pressure volume V0. The Birch-Murnaghan equation is reproduced below as Equation S12d.1: 

𝑃 𝑉 =
3𝐵!
2

𝑉!
𝑉

!
!
−

𝑉!
𝑉

!
!

1+
3
4 (𝐵!

! − 4)
𝑉!
𝑉

!
!
− 1  

(S12d.1) 

 

 We solved for V0 by evaluating each prospective V0 volume in the range of 300 to 600 

cubic Angstroms (for our 2x2x2 supercell size) in steps of 0.1 cubic Angstroms, paired with the 

known V, and took the closest match to the observed P for each case. Then we calculate the 

migration volume as in Equation S12d.2, with error treatment in Equation S12d.3: 

𝑑𝑉!"# = 𝑉!,!"#$%!#&' − 𝑉!,!"!#!$% (S12d.2) 

𝜎!"!"# = 𝜎!!"#$%!#&'! + 𝜎!!"!#!$%! = 0.1! + 0.1! = 0.1 2 (S12d.3) 

 

 Note that the values of σVactivated and σVinitial are taken as 0.1 Å3, as this is the step size 

used in obtaining the values.  The obtained dVmig values are listed in Table S12.5.  

 

 As a different way to evaluate the elastic strain model than comparing slopes, we can 

supply the DFT migration barrier slopes on the left-hand side of Equation S12.4 and calculate 

anticipated volumes, then compare those volumes against either our Birch-Murnaghan equation 
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migration volumes, or our volume-only relaxation migration volumes. Figure S12.3 and Figure 

S12.4 show elastic-model anticipated volumes, using the Young’s modulus, Poisson’s ratio, and 

DFT-fit slopes in the elastic model Equation S12.4 in order to calculate a volume, compared to 

the Birch-Murnaghan calculated volumes and the volume-only relaxation calculated volumes, 

respectively. Figure S12.5 reproduces the elastic model analysis in the main text, but using 

volume-only relaxations for Vmig rather than Birch-Murnaghan migration volumes. Figure S12.4 

and Figure S12.5 with volume-only relaxation calculations for Vmig are clustered somewhat 

closer to the guideline than the Birch-Murnaghan-calculated migration volumes, but show 

greater scatter in the outlier points. 
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Tables	  

Table	  S3.1.	  Supercell	  energy	  comparison	  for	  orthogonal	  versus	  non-‐
orthogonal	  lattice	  vector	  c.	  

Table S3.1. Supercell energy comparison for orthogonal versus non-orthogonal assumption for 
lattice vector c. 

  Fitting equation coefficients for supercell energy 
(eV) 

Energy difference 
(eV), using 
original c fraction 
* sin(angle) 

% 
strain, a 
and b 

Fitted c 
fraction, 
greatest 
magnitude  

(c 
fraction)3 

(c 
fraction)2 

c fraction constant 91.4° 89.8° 

-2 1.0268 
(B=Mn) 

706.11 -1869.1 1605.0 -778.78 3E-05 1E-07 

2 0.9838 (B=Fe) -2231.90 6980.0 -7253.2 2182.30 -3E-06 -7E-07 

Table	  S5.1.	  U-‐values	  for	  GGA+U	  

Table S5.1. U-values for GGA versus GGA+U barriers.13, 39  

B-site cation U-J value for B-site, J=1 eV 
Ti 4.0 
V 3.1 
Cr 3.5 
Mn 4.0 
Fe 4.0 
Co 3.3 
Ni 6.4 
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Table	  S6.1.	  Magnetic	  moment	  per	  B-‐site	  cation	  from	  FM	  configuration	  

Table S6.1. Magnetic moment per B-site cation in LaBO3 perovskites, when relaxed from a high-
spin ferromagnetic starting configuration.a 

   Uncompensated Compensated 
B-site Experimental (µB) Bulk 

(µB) 
Endpoint 
(µB) 

Middle 
image 
(µB) 

Endpoint 
(µB) 

Middle 
image 
(µB) 

Sc 0 0.0 0.0 0.3 0.0 0.0 
Ti 0.4620  0.1 0.2 0.3 0.3 0.3 
V 1.440 2.0 2.0 2.0 1.7 1.7 
Cr 2.8±0.241 3.0 3.0 3.3 3.0 3.0 
Mn 3.9±0.241  4.0 4.0 4.3 4.0 4.0 
Fe 4.6±0.241  3.5 3.3 3.3 3.5 3.5 
Co 2b42 1.6 1.4 1.3 1.7 1.8 
Ni 1c43  0.3 0.1 0.3 0.4 0.2 
Ga 0 0.0 0.0 0.0 0.0 0.0 
 
a The full relaxation was followed by a static calculation. The calculated magnetic moment for 
the B-site cation in the bulk or endpoint is taken by dividing the total supercell magnetic moment 
by 8. This procedure re-attributes to the B-site cations the small moments which the VASP 
calculations sometimes put onto the La3+ and O2- ions. The magnetic moment for the first 
endpoint was in all cases the same as the magnetic moment for the second endpoint, to the 
accuracy displayed here. 
b According to Saitoh et al., LaCoO3 is nonmagnetic at 0K to paramagnetic at 90K, with a 
purported transition from t2g

6 to t2g
5eg

1, which would give a moment of 2 µB per Co ion. 
c According to Sreedhar et al., the configuration is t2g

6eg
1. 
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Table	  S6.2.	  Effect	  of	  AFM	  structure	  on	  LaXO3	  calculations	  

Table S6.2. Effect of antiferromagnetic structure on LaXO3 calculations, using a 4x4x4M kpoint 
mesh. 

B-
site 

Exper. AFM Ebulk, 

AFM 
< 
Ebulk, 

FM
b 

Emig, AFM – 
Emig, FM

a 
(compensated) 

Emig, AFM – Emig, FM 
(uncompensated) 

Néel Temp. (K)44  

Sc not magnetic18  N/A N/A N/A (not listed) 
Ti G-type45 No N/A N/A paramagnetic 
V C-type, cited18 -

0.22 
-0.03 0.04 137 

V G-type46 No N/A -0.11 137 
Cr G-type41  -

0.72 
-0.15 0.36 320 

Mn A-type41 No N/A N/A 100 
Mn G-type (for 

consistency) 
No N/A N/A 100 

Fe G-type41 -
0.30 

-0.11 -0.39 750 

Co None (<90 K) to 
paramagnetic42  

N/A N/A N/A (not listed) 

Ni None (<15K) to 
paramagnetic43  

N/A N/A N/A paramagnetic 

Ga not magnetic47 N/A N/A N/A (not listed) 
a Migration barriers were taken from 3-image CNEB calculations 
b If the relaxed bulk energy calculated in VASP with an antiferromagnetic high-spin starting 
configuration was lower than the relaxed bulk energy calculated with a ferromagnetic starting 
configuration, then more AFM calculations were pursued. 
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Table	  S6.3.	  Literature	  values	  for	  comparison	  with	  LaXO3	  barriers.	  

Table S6.3. Literature values for Figure S6.1. 

Actual material Approx. 
material 

Temp. (°C) Emig (eV) Source 

La0.9Sr0.1Sc0.9Mg0.1O3 LaScO3 1000 0.50 22 
La0.7Ca0.3CrO3 LaCrO3 900-1000 0.81 48 
La0.79Sr0.20MnO3 LaMnO3 700-860 0.73 49 
La0.8Sr0.2MnO3 LaMnO3 850-1000 1.47 24 
LaFeO3 LaFeO3 900-1100 0.77 28 
La0.9Sr0.1FeO3 LaFeO3 900-1100 0.82 28  
La0.75Sr0.25FeO3 LaFeO3 900-1050 1.18 28  
LaCoO3 LaCoO3 850-1000 0.78 50 
LaCoO3 LaCoO3 850-1000 0.80 28  
La0.9Sr0.1CoO3 LaCoO3 800-1000 0.82 28  
La0.9Sr0.1Ga0.9Mg0.1O3 LaGaO3 1000 0.60 22  
 

Table	  S7.1.	  Difference	  between	  electron-‐removal	  compensated	  migration	  
barriers	  and	  doped	  migration	  barriers.	  
Table S7.1. Difference between electron-removal compensated migration barriers and doped 
migration barriers. This hop is from O29 to O30 (unstrained).  

B-site Barrier for LaBO3 
compensated - barrier for 

LaBO3 doped (eV) 

With shift from mean of 
compensated minus 
doped barrier (eV) 

Sc -0.07 0.07 
Ti -0.12 0.02 
V -0.11 0.03 
Cr -0.21 -0.07 
Mn -0.25 -0.11 
Fe -0.24 -0.10 
Co -0.10 0.04 
Ni -0.07 0.07 
Ga -0.08 0.06 
Largest value -0.25 -0.11 
Mean value -0.14 0.00 
RMS value 0.16 0.07 
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Table	  S7.2	  In-‐plane	  and	  out-‐of-‐plane	  slopes	  for	  La0.75Sr0.25BO3	  supercells,	  
compared	  with	  undoped	  slopes.	  	  
 
Table S7.2 In-plane and out-of-plane slopes for La0.75Sr0.25BO3 supercells, compared with 
undoped slopes. In-plane hop is from oxygen position o31 to o30 (see Figure S2.1). Out-of-plane 
hop is from oxygen position o29 to o30. Cross-body diagonal dopant positions are a1 and a8. 
Cross-face diagonal dopant positions are a2 and a8. In-line dopant positions are a4 and a8.  
 

   Slope of migration barrier versus strain (meV/% strain) +/- fitting 
error 

 B-site 
cation 

Dopant 
position: 

Cross-body Cross-face In-line No dopants 
(electron-
removal 

compensated) 
In-

plane 
hop 

Sc  -24 +/- 1 -26 +/- 1 -31 +/- 1 -36 +/- 3 
Cr  -91 +/- 1 -90 +/- 1 -92 +/- 1 -85 +/- 0 
Mn  -106 +/- 9 -94 +/- 9 -111 +/- 16 -64 +/- 4 

Out-
of-

plane 
hop 

Sc  -34 +/- 3 -31 +/- 1 -47 +/- 2 -52 +/- 2 
Cr  -111 +/- 2 -98 +/- 1 -110 +/- 1 -122  +/- 1 
Mn  -68 +/- 12 -73 +/- 4 -91 +/- 6 -77 +/- 3 

 

Table	  S8.1.	  Out-‐of-‐plane	  slopes	  and	  slope	  error	  
Table S8.1. Out-of-plane slopes and slope error for Figure S8.1. 

B-site cation Out-of-plane 
slope fit to DFT 
(meV/% strain) 

Out-of-plane 
slope error 
(meV/% strain) 

Sc -52 2 
Ti -73 3 
V -115 25 
Cr -122 1 
Mn -77 3 
Fe -79 9 
Co -80 7 
Ni -21 10 
Ga -64 0.4 
 
 

Table	  S8.2.	  Eight	  migration	  barriers	  in	  LaXO3	  for	  several	  B-‐site	  cations.	  
Table S8.2. Eight migration barriers in LaXO3 (compensation state indicated), moving the 
vacancy from atomic position 30 (an arbitrary choice for convenience) to the position indicated, 
and using a single image except where noted and a 4x4x4M kmesh. Barriers and range are 
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measured in eV. The in-plane hop discussed in the main text and the out-of-plane hop discussed 
in the Supporting Information are marked in bold. 
Oxygen 
position 

Sc 
uncompe
nsated 

Sc 
compensated 

Ti 
uncomp. 

V (3 
images) 
uncomp. 

Cr 
uncomp. 

Mn (3 
images) 
uncomp. 

Fe 
uncomp. 

In-plane 
hops 

       

30 to 19 2.33 0.85 1.76 1.80 1.89 1.20 0.95 
30 to 25 1.80 0.53 1.67 1.66 1.85 1.19 0.92 
30 to 31 1.73 0.49 1.56 1.62 1.72 0.92 0.83 
30 to 37 2.03 0.75 1.66 1.72 1.79 1.16 0.95 
Out-of-
plane 
hops 

       

30 to 17 1.97 0.53 1.61 1.60 1.86 1.19 0.86 
30 to 20 1.96 0.46 1.61 1.64 1.79 0.98 0.83 
30 to 29 1.96 0.46 1.61 1.64 1.72 0.98 0.81 
30 to 32 1.97 0.53 1.61 1.60 1.84 1.09 0.86 
Range 
(eV) 0.60 0.39 0.20 0.20 0.17 0.28 0.14 

 

 

Table	  S12.1.	  Comparing	  PVmig	  for	  constant	  pressure	  and	  Emig	  for	  constant	  
volume	  
Table S12.1. Comparing PVmig for constant pressure and Emig for constant volume,from LaCrO3, 
in-plane hop. The pressure given is that of the perfect strained cell. The migration volume was 
calculated using the Birch-Murnaghan equation procedure in Section S12d.  The “Schichtel 
expected” pressure value is calculated from Equation S12.1, given the LaCrO3 prefactor from 
Table S12.2. The ΔEmig value is taken as the difference between the strained Emig and the zero-
strain Emig (0.90 eV). The Schichtel expected ΔGmig is calculated from Equation S12.2, given 
both the LaCrO3 prefactor from Table S12.2 and the migration volume in this table. 

 

Epitaxial 
strain 

P (kbar) Vmig 
(Å3) 

PVmig 
(eV) 

Schichtel 
expected 
P (kbar) 

Emig, (eV) ΔEmig 
(eV) 

Schichtel 
expected 
ΔGmig (eV) 

-0.02 43.89 4.5 0.12 46.12 1.06 0.161 0.13 
0.02 -45.08 4.2 -0.12 -46.12 0.73 -0.178 -0.12 
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Table	  S12.2.	  Strained-‐bulk	  calculated	  Poisson’s	  ratio,	  Young’s	  modulus,	  and	  
prefeactor,	  with	  errors.	  

Table S12.2. Strained-bulk calculated Poisson’s ratio, Young’s modulus, and prefactor, with 
errors. 

B-site 
cation 

Poisson’s 
ratio 

Error 
in ν 

Y 
(eV/Å3) 

Error in Y 
(eV/Å3) 

Prefactor 
(eV/Å3) 

Error in prefactor 
(eV/Å3) 

Sc 0.290 0.001 1.23 0.02 1.16 0.02 
Ti 0.292 0.003 1.37 0.03 1.29 0.03 
V 0.311 0.087 1.29 0.59 1.25 0.67 
Cr 0.266 0.001 1.59 0.02 1.44 0.02 
Mn 0.350 0.003 0.95 0.04 0.97 0.04 
Fe 0.321 0.008 1.03 0.06 1.02 0.07 
Co 0.311 0.022 1.17 0.15 1.13 0.17 
Ni 0.386 0.015 0.76 0.20 0.82 0.21 
Ga 0.321 0.000 1.14 0.02 1.12 0.02 
 

Table	  S12.3.	  Bulk	  modulus	  values	  and	  errors	  

Table S12.3. Bulk modulus values and errors 

B-site 
cation 

B0 (kbar) error in B0 
(kbar) 

B0’ B0 (GPa) B0 (eV/Å3) error in B0 
(eV/Å3) 

Sc 1572 8 4.12 157.2 0.981 0.005 
Ti 1761 10 4.25 176.1 1.099 0.006 
V 1820 6 4.52 182.0 1.136 0.004 
Cr 1805 9 4.09 180.5 1.127 0.006 
Mn 1689 16 3.93 168.9 1.054 0.010 
Fe 1539 17 3.37 153.9 0.961 0.010 
Co 1652 31 2.46 165.2 1.031 0.020 
Ni 1766 72 3.99 176.6 1.102 0.045 
Ga 1692 10 4.28 169.2 1.056 0.006 
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Table	  S12.4.	  Vacancy	  effects	  on	  bulk	  modulus	  and	  elastic	  model	  
Table S12.4. Vacancy effects on bulk modulus and elastic model. The bulk modulus was 
calculated using a series of static calculations at different volumes under the specified conditions. 

 B=Mn B=Cr 

Condition B0 
(eV/Å3) 

E 
(eV/Å3) 

prefactor 
(2/3)*E/(1-

ν) 

B0 
(eV/Å3) 

E 
(eV/Å3) 

prefactor 
(2/3)*E/(1-ν) 

Undefected 
bulk 

1.05 0.95 0.97 1.13 1.58 1.44 

Initial state, 
compensated 

vacancy 

1.22 1.10 1.13 1.31 1.83 1.67 

Transition 
state, 

compensated 

1.14 1.03 1.05 1.21 1.70 1.55 

Initial state, 
uncompensated 

vacancy 

1.08 0.97 1.00 1.10 1.55 1.41 

Transition 
state, 

uncompensated 

1.02 0.92 0.95 1.07 1.50 1.36 

 

Table	  S12.5.	  Migration	  volumes,	  calculated	  with	  BM	  equation	  or	  allowing	  
volume-‐only	  relaxation	  

Table S12.5. Migration volumes, calculated with the Birch-Murnaghan equation (first two 
numeric columns) and calculated by allowing a volume-only relaxation (last two columns) 

B-site 
cation 

dVmig IP, 
Birch-Murn. 

dVmig OOP, 
Birch-Murn. 

dVmig IP, volume 
relaxation (not used) 

dVmig OOP, volume 
relaxation (not used) 

Sc 2.2 2.8 3.0 3.9 
Ti 3.1 3.7 3.9 4.7 
V 6.1 9.5 11.4 5.4 
Cr 4.3 4.6 5.8 6.3 
Mn 3.4 3.8 4.7 5.3 
Fe 7.1 7.3 8.3 8.2 
Co 3.8 4.1 5.2 6.0 
Ni  2.9 2.7 5.4 5.5 
Ga 2.5 3.4 3.9 5.2 
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Figures	  

 

Figure	  S2.1.	  Numbered	  atomic	  positions.	  

Figure S2.1. Numbered atomic positions, taken from the relaxed LaMnO3 bulk, pictured with 
atomic radii for clarity. 
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Figure	  S5.1.	  GGA	  versus	  GGA+U	  no-‐strain	  migration	  barriers.	  

Figure S5.1. GGA versus GGA+U no-strain migration barriers. 
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Figure	  S6.1.	  Literature	  compared	  with	  LaXO3	  barriers.	  

Figure S6.1. Literature compared with LaXO3 uncompensated (reduced B-site cations) and 
compensated (all B-site cations nominally 3+ due to removal of extra electrons along with 
oxygen atoms) systems. Literature values are given in Table S6.3. 
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Figure	  S7.1	  LaScO3	  and	  La0.75Sr0.25ScO3	  migration	  barrier	  versus	  strain,	  in-‐
plane	  hop	  
 
Figure S7.1 LaScO3 and La0.75Sr0.25ScO3 migration barrier versus strain, in-plane hop from 
oxygen position o31to o30 (see Figure S2.1). Cross-body diagonal dopant positions are a1 and 
a8. Cross-face diagonal dopant positions are a2 and a8. In-line dopant positions are a4 and a8. 
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Figure	  S7.2	  LaScO3	  and	  La0.75Sr0.25ScO3	  migration	  barrier	  versus	  strain,	  out-‐of-‐
plane	  hop	  
 
Figure S7.2 LaScO3 and La0.75Sr0.25ScO3 migration barrier versus strain, out-of-plane hop from 
oxygen position o29 to o30 (see Figure S2.1). Cross-body diagonal dopant positions are a1 and 
a8. Cross-face diagonal dopant positions are a2 and a8. In-line dopant positions are a4 and a8. 
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Figure	  S7.3	  LaCrO3	  and	  La0.75Sr0.25CrO3	  migration	  barrier	  versus	  strain,	  in-‐
plane	  hop	  
 
Figure S7.3 LaCrO3 and La0.75Sr0.25CrO3 migration barrier versus strain, in-plane hop from 
oxygen position o31 to o30 (see Figure S2.1). Cross-body diagonal dopant positions are a1 and 
a8. Cross-face diagonal dopant positions are a2 and a8. In-line dopant positions are a4 and a8. 
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Figure	  S7.4	  LaCrO3	  and	  La0.75Sr0.25CrO3	  migration	  barrier	  versus	  strain,	  out-‐of-‐
plane	  hop	  
 
Figure S7.4 LaCrO3 and La0.75Sr0.25CrO3 migration barrier versus strain, out-of-plane hop from 
oxygen position o29 to o30 (see Figure S2.1). Cross-body diagonal dopant positions are a1 and 
a8. Cross-face diagonal dopant positions are a2 and a8. In-line dopant positions are a4 and a8. 
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Figure	  S7.5	  LaMnO3	  and	  La0.75Sr0.25MnO3	  migration	  barrier	  versus	  strain,	  in-‐
plane	  hop	  
 
Figure S7.5 LaMnO3 and La0.75Sr0.25MnO3 migration barrier versus strain, in-plane hop from 
oxygen position o31 to o30 (see Figure S2.1). Cross-body diagonal dopant positions are a1 and 
a8. Cross-face diagonal dopant positions are a2 and a8. In-line dopant positions are a4 and a8. 
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Figure	  S7.6	  LaMnO3	  and	  La0.75Sr0.25MnO3	  migration	  barrier	  versus	  strain,	  out-‐
of-‐plane	  hop	  
 
Figure S7.6 LaMnO3 and La0.75Sr0.25MnO3 migration barrier versus strain, out-of-plane hop from 
oxygen position o29 to o30 (see Figure S2.1). Cross-body diagonal dopant positions are a1 and 
a8. Cross-face diagonal dopant positions are a2 and a8. In-line dopant positions are a4 and a8. 
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Figure	  S8.1.	  Migration	  barrier	  versus	  strain,	  out-‐of-‐plane	  hop	  
Figure S8.1. Change in migration barrier versus biaxial strain for a selected out-of-plane hop for 
all systems (o29 to o30). 
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Figure	  S8.2.	  Migration	  barrier	  versus	  strain	  slopes	  for	  in-‐plane	  and	  out-‐of-‐
plane	  hops.	  
 

Figure S8.2. Slopes in migration barrier for in-plane and out-of-plane hops across all systems, 
plotted by B-site cation atomic number. These slope values correspond to Table 1 in the main 
text and Table S8.1. No clear trend with B-site atomic number is evident. 
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Figure	  S8.3.	  LaCrO3	  barriers,	  all	  hops.	  
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Figure S8.3. LaCrO3 calculated barriers, all oxygen hops, all octahedra, with a total of 96 barriers 
(12 symmetry distinct) for each strain case. The no-strain case is shown here. Several barriers 
overlap, reducing the apparent number of points. The top plot shows the hop energy from the 
initial to the final endpoint, where the out-of-plane and in-plane hops calculated consistently for 
all systems are highlighted in green and blue, respectively. The smaller plots show the energies 
for hops in the maximum hop energy (bottom left plot) and minimum hop energy (bottom right 
plot) directions. The change in energy associated with hopping in the opposite direction is never 
more than 30 meV 
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Figure	  S8.4.	  LaMnO3	  barriers,	  all	  hops.	  
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Figure S8.4. LaMnO3 calculated barriers, all oxygen hops, all octahedra, with a total of 96 
barriers (12 symmetry distinct) for each strain case. The no-strain case is shown here. Several 
barriers overlap, reducing the apparent number of points. The top plot shows the hop energy 
from the initial to the final endpoint, where the out-of-plane and in-plane hops calculated 
consistently for all systems are highlighted in green and blue, respectively. The smaller plots 
show the energies for hops in the maximum hop energy (bottom left plot) and minimum hop 
energy (bottom right plot) directions. The change in energy associated with hopping in the 
opposite direction is never more than 30 meV.  

 
 

 

 

Figure	  S8.5.	  Migration	  barrier	  versus	  strain	  for	  LaCrO3,	  central	  cation	  position	  
10.	  

Figure S8.5. Migration barrier versus strain for LaCrO3 with central cation position 10, for hops 
in the direction of initial endpoint to final endpoint, giving a representative example that all 
migration barriers decrease with increasing tensile strain.  
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Figure	  S8.6.	  Migration	  barrier	  versus	  strain	  for	  LaMnO3,	  central	  cation	  
position	  9	  

Figure S8.6. Migration barrier versus strain for LaMnO3 with central cation position 9, for hops 
in the direction of initial endpoint to final endpoint, giving a representative example that all 
migration barriers decrease with increasing tensile strain. 
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Figure	  S8.7.	  Slopes	  in	  migration	  barrier	  for	  LaCrO3,	  all	  hops.	  	  

Figure S8.7. Slopes in migration barrier for LaCrO3, all hops, in the direction of intial endpoint 
to final endpoint. The in-plane hop used for all systems and the out-of-plane hop used for all 
systems (described in Section S8) are highlighted in blue and green, respectively. 
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Figure	  S8.8.	  Slopes	  in	  migration	  barrier	  for	  LaMnO3,	  all	  hops.	  	  

Figure S8.8. Slopes in migration barrier for LaMnO3, all hops, in the direction of initial endpoint 
to final endpoint. The in-plane hop used for all systems and the out-of-plane hop used for all 
systems (described in Section S8) are highlighted in blue and green, respectively. 
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Figure	  S8.9.	  Elastic	  strain	  model	  slopes	  versus	  slopes	  fit	  to	  DFT	  barriers,	  all	  
LaCrO3	  and	  LaMnO3	  hops	  represented	  

Figure S8.9. Elastic strain model slopes versus slopes fit to DFT barriers, with all LaCrO3 and 
LaMnO3 hops represented (light blue diamonds for LaCrO3 and purple triangles for LaMnO3). 
The elastic strain model slope for each hop was calculated using that particular hop’s no-strain 
Birch-Murnaghan calculated migration volume. 
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Figure	  S10.1.	  Example	  of	  cubic	  fitting	  for	  lattice	  vector	  c	  fractional	  multiplier.	  	  

Figure S10.1. Example of cubic fitting for lattice vector c fractional multiplier, for the B=Fe 
system at -2% biaxial strain. The volume-conserving multiplier would be around 1.04. The actual 
fit multiplier turns out to be 1.021. Note that there are two distinct magnetic moment curves. 

 

Figure	  S10.2.	  Fine-‐gridding	  for	  B=Cr.	  

Figure S10.2. Fine-gridding for the B=Cr system, showing a smooth curve. Each lattice vector c 
response multiplier was the result of a separate 7-point cubic fit at the given strain in lattice 
vectors a and b. 
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Figure	  S12.1.	  Sample	  V(P)	  curve	  showing	  a	  cubic	  fit.	  

Figure S12.1. Sample V(P) curve showing a cubic fit. 

 

 

 



70 
 

 

Figure	  S12.2.	  Vacancy	  effects	  on	  elastic	  model	  (compare	  with	  Figure	  4	  in	  main	  
paper).	  
Figure S12.2. Vacancy effects on elastic model (compare with Figure 4 in main paper). The 
largest shift effect is shown; see points B=Cr and B=Mn. 
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Figure	  S12.3.	  Using	  elastic	  model	  to	  try	  to	  predict	  Vmig	  (BM)	  

Figure S12.3. Elastic model migration volume versus Birch-Murnaghan formula migration 
volume. Data point is the center of each symbol. 
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Figure	  S12.4.	  Using	  elastic	  model	  to	  try	  to	  predict	  Vmig	  (volume-‐only	  
relaxation)	  

Figure S12.4. Elastic model migration volume versus volume-only relaxation migration volume. 
Data point is the center of each symbol. 
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Figure	  S12.5.	  Using	  elastic	  model	  to	  try	  to	  predict	  slopes,	  with	  Vmig	  from	  
volume-‐only	  relaxation	  

Figure S12.5. Elastic model-calculated slopes using volume-relaxation volumes, versus DFT-fit 
slopes. Data point is the center of each symbol. 
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