Supplementary Information

Distinct Kinetics of Molecular Gelation in a Confined Space and Its Relation to the Structure and Property of Thin Gel Films

Yu Liu, ^a Wen-Jing Zhao, ^a Jing-Liang Li, ^{*b} Rong-Yao Wang, ^{*a}

 ^a Key Laboratory of Cluster Science of Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, China, 100081. Email: <u>wangry@bit.edu.cn</u>
^b Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, Australia 3216. *E-mail: jli@deakin.edu.au*

1. The procedure of thermal control used in the dynamic rheological measurements and evolution of the storage modulus in the process of sol-to-gel transition for the GP-1/PG gelling system.

Fig. S1 (a) The procedure of thermal control used in the dynamic rheological measurements for the GP-1/PG gelling system. (b) Evolution of the storage modulus in the process of sol-to-gel transition of a 3 wt % GP-1/PG system at different gap sizes: \Box : 80 µm, \triangle : 500 µm, ∇ : 800 µm.

Fig. S2 Evolution of storage modulus at the induction stage of sol-to-gel transition of a 3 wt % GP-1/PG system at different gap sizes.

2. Kinetic analyses of GP-1/PG gel formation

Fig. S3 A: Evolution of storage modulus in the process of sol-to-gel transition: \Box : 2wt %, \bigcirc : 3wt %, \triangle : 4wt %, \bigtriangledown : 5wt %, \diamond : 6 wt %. B: Fractal analysis of the kinetic data acquired by dynamic rheological measurements and in terms of the extended Dickinson model (eqn (1)) for the GP-1/PG gels of different concentrations. (a) power-law behaviours of the storage moduli of the elastic moduli with respect to the gelator concentrations. (b-e) The linear

fits were conducted for the first stage of the kinetic processes to extract the D_f values. All the gels were formed within a gap of 500 μ m.

Fig. S4 A: Evolution of storage modulus in the process of sol-to-gel transition: \Box : 2wt %, \bigcirc : 3wt %, \triangle : 4wt %, \bigtriangledown : 5wt %, \diamond : 6 wt %. B: Fractal analysis of the kinetic data acquired by dynamic rheological measurements and in terms of the extended Dickinson model (eqn (1)) for the GP-1/PG gels of different concentrations. (a) power-law behaviours of the storage moduli of the elastic moduli with respect to the gelator concentrations. (b-e) The linear

fits were conducted for the first stage of the kinetic processes to extract the D_f values. All the gels were formed within a gap of 80 μ m.

3. Optical and electron micrographs

Fig. S5 The microstructures of 3wt % GP-1/PG gel film formed at gap ~ 800 μ m. The gelation temperature is 30 °C and the cooling rate is 20 °C/min: Optical micrographs of the 3D spherulitic networks from the middle (a) and lower planes (b), and SEM image (c).

Fig. S6 The microstructures of 3wt % GP-1/PG gel film formed at gap ~ 100 μ m. The gelation temperature is 30 °C and the cooling rate is 20 °C/min: (a, b) Optical micrographs; (c, d) SEM images.

4. Estimation of the fractal dimension (D_f) of the spherulitic network by an image analysis method

As in previous studies, ^[1-4] The fractal dimension D_f of a fiber network can be estimated directly by some image analyses methods, such as the box counting method, Sandbox method and the area - the radius of gyration method. Herein, Box Counting method was used to estimate the values of D_f for the spherulitic networks formed with and without space confinement.

The box counting dimension is computed by superimposing on the object a grid of size ε , counting how many boxes $N(\varepsilon)$ contain the object, and repeating the task for various box sizes ε .

$$N(\varepsilon) \propto \varepsilon^{-Df}$$

where $N(\varepsilon)$ is the number of boxes needed to cover entirely the object and D_f is the fractal dimension. ε is made progressively smaller and the corresponding number of non-empty boxes, $N(\varepsilon)$ are counted. The logarithm of $N(\varepsilon)$ versus the logarithm of ε , gives a line whose gradient corresponds to D_f . Herein we used a software (FracLac for ImageJ) to do fractal analyses.

For the spherulitic networks formed without space confinement, the SEM micrographs were used to estimate the value of D_f , as shown in Fig. S7.

Fig. S7 SEM images (left) and the estimation of D_{f} by the box-counting method (right, FracLac for ImageJ

software) for a 3wt % GP-1/PG gel formed at the gap size of ~ 800 $\mu m.$

For the spherulitic networks formed with space confinement, the OM micrographs were used to estimate the value of D_f , as shown in Fig. S8.

Fig. S8 Optical micrographs (left) and the estimation of D_f (right, FracLac for ImageJ software) for 3wt % GP-1/PG gel formed at the gap size of ~ 50 μ m.

5. Rheological properties of the GP-1/PG gels

Fig. S9 Raw data of measuring the storage modulus of the quasi-equilibrium state $G'(\infty)$ (a) and the critical strain γ_c (b) of a 3wt % GP-1/PG gel formed at different gap sizes. \Box : 50 µm, \bigcirc : 80 µm, \bigtriangleup : 100 µm, \bigtriangledown : 200 µm, \diamondsuit : 500 µm, \bigstar : 800 µm.

Fig. S10 (a) Variation of the storage modulus (\circ) at the quasi-equilibrium state and strain (\Box) as a function of gap size, acquired from the 4 wt % GP-1/PG system. (b,c) Raw data of the measured storage modulus of the quasi-equilibrium state $G'(\infty)$ (b) and the critical strain γ_c (c) from the 4 wt % GP-1/PG gel formed at different gap sizes. \Box : 50 µm, \bigcirc : 80 µm, \triangle : 100 µm, \bigtriangledown : 200 µm, \diamondsuit : 500 µm, \bigstar : 800 µm.

6. Effects of space confinement on the GP-1/Octanol gelling system

6.1. Structural transition from 3D to quasi-2D fiber network

Fig. S11 Optical micrographs of the spherulitic networks obtained from 6 wt % (a, b) and 10 wt % (c,d) GP-1/octanol gels. (a,c) gap ~ 200 μ m, (b,c) gap ~ 50 μ m. The gelation temperatures for the 6 wt % and 10 wt % GP-1/octanol are set at 15 °C and 25 °C, respectively.

6.2 Modification of the rheological properties of the GP-1/Octanol gel films

Fig. S12 The critical strain γ_c from the 10 wt % GP-1/ octanol gel formed at the gelation temperature of 25 °C with a cooling rate of 20 °C/min : (a) gap=200 µm; (b) gap=100 µm; (c) gap=80 µm; (c) gap=50 µm. \bigcirc : First measurement; \triangle : Second measurement; ∇ : Third measurement.

Fig. S13 Variation of the storage modulus (a) at the quasi-equilibrium state and the critical strain (b) as a function of gap size. 10 wt % GP-1/ octanol system is used. The gelation temperature is 25 °C and the cooling rate is 20 °C /min. \bigcirc : First measurement; \triangle : Second measurement; \bigtriangledown : Third measurement.

References

- 1. E. Fern ández, J.A. Bolea, G. Ortega and E. Louis, J. Neurosci. Meth., 1999, 89, 151.
- 2. G. Landini, P. I. Murray and G. P. Misson, Invest. Ophth. Vis. Sci. , 1995, 36, 2749.
- 3. T. G. Smith, Jr, G. D. Lange and W. B Marks, J. Neurosci. Meth., 1996, 69, 123.
- 4. A. N. D. Posadas, D. Gim énez, M. Bittelli, C. M. P. Vaz and M. Flury, Soil Sci. Soc. Am. J., 2001, 65, 1361.