
Appendix: Reduction of the transport equations from the structure element level to the charged component 
level

Here we will show, by assuming a simple defect structure, but without sacrificing any generality, how the 
transport equations on the structure element level are to be reduced to those on the charged component 
level, Eq. (1), in due thermodynamic course. 

Suppose that we know a priori the defect structure of a mixed conducting oxide, say, AO1-, as comprising 
oxygen vacancies with every possible effective charges and electrons. The mobile structure elements (SE) may 
then be listed in the Kroger-Vink notation as:

                                                  (A.1)x x x
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where particularly  stands for electrons in the conduction band (C) and  for holes in C, the electronic Ce x
Ch

regular SE corresponding to the ionic regular SE, . These SEs will be henceforth labelled as k=1,2,…,6 in x
OO

order. 

Irreversible thermodynamics stipulates that the energy dissipation (T) due to entropy generation () at a 
temperature (T) be written as
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where jk and Xk denote the flux and thermodynamic force (=-k) of SE k, respectively. Letting denote the kml
coupling transport coefficient on the SE-level,
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in the linear regime, suggesting that a SE k can be driven to flow by any thermodynamic force Xm. It is noted 
that there are 36 -coefficients, which are subjected to redundancies due to the constraints upon the SE-l
fluxes jk and local quasi-chemical equilibria.

Firstly, they are
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as the numbers of lattice sites and electronic energy states should be both conserved (structure condition). For 
these to be always true for arbitrary Xm (m=1,2,…,6), 
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Secondly, substitution of Eq. (A5) into Eq. (A.3) leads to 
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This means that for Xm=X4 (m=1,2,3) and X5=X6, jk=0 (k=1-6). For this to be always true, 

     (k=1-6)                             (A.7)
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It now turns out that the 36 -coefficients in Eq. (A.3) are subjected to 12 inter-relationships, Eq. (A.4) and l
another 12, Eq. (A.7). These 24, however, are not independent of each other at all: As the summations over m 
of Eq. (A.4) and them over k of Eq. (A.7) are the same, 4 out of these 24 are rendered redundant, and hence, 
only 16 out of 36 survive. As these 16 are for the 4 independent fluxes, they are further to satisfy the Onsager 
reciprocity [1,2,4] or 

.                                                (A.8)km mkl l

Subsequently, we will choose the fluxes of k=1,2,3 and 5 as independent ones only for the sake of 
convenience.

The thermodynamic forces are also reduced to those of mobile charged components, O2-(=i) and e- 
 (=e) or 

holes h+(=h) via internal quasi-chemical equilibria:

x 2
O O 1 4 iO V O  :   X -X =X    gg ƒ

x
C C 5 6 e he h e h :  X X X X        ƒ
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By substituting Eq. (A.9) into Eq. (A.6), one obtains
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6

k k1 i km m e
m 1

j X βX


  l l

where the number of electrons associated with SE m, m takes the numerical values:

               (A.11)1 4 6 2 3 5βββ0;  β2;  ββ1     

Eliminating the dependent fluxes j4 and j5 due to Eq. (A.4) and substituting Eq. (A.9) for Xm-X4 (m=1,2,3) and X5-
X6, Eq. (A.2) takes the form,
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One may, thus, read off from Eq. (A.12) the fluxes of the mobile charged components, ions (O2-), Ji and 
electrons (e-), Je, corresponding to Xi and Xe, respectively, as
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By substituting Eq. (A.10) here, one finally obtains the thermodynamic equations of motion on the level of 
charged components (O2-, e-), commensurate with Eq. (1) in the text1,
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where the Onsager L-coefficients are each expressed in terms of as:kml
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It is noted that Eq. (A.8) leads to the Onsager reciprocity on the charged component level, Lie=Lei and vice 
versa.  

Let us finally examine the ionic charge-of-transport, (=Lie/Lii). By replacing for the regular SE k=1 with *
iα 1ml

those for the irregular structure elements or defects by using Eqs. (A.5) and (A.7), one gets
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If and only if there were no long-range interactions or =0 for km, Eq. (A.16) takes the form,kml
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Noting that , one can immediately recognize that Eq. (A.17) is nothing but Eq. (4) in the text. The kk k kD cl

ionic charge-of-transport  would, thus, phenomenologically correspond to the kinetic average of the *
iα

number of electrons(k) or holes(-k) associated with all kinds of ionic defects, were it not for long-range 

interactions among defects (i.e., 0 for km).  kml

1 Eq. (1) employs h+, instead of e-. One can easily transform Je to Jh simply by taking Je=-Jh, Xe=-Xh and -m as the 
number of holes associated with SE m.  


