Supporting information

Construction of flexible photoelectrochemical solar cells based on ordered nanostructural BiOI/Bi₂S₃ heterojunction films

Mingqing Fang,^{ab} Huimin Jia,^a Weiwei He, ^a Yan Lei, ^a Lizhi Zhang^{*b} and Zhi Zheng^{*a}

^a Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province and Institute of Surface

Micro and Nano Materials, Xuchang University, Henan 461000, P.R. China.

^b Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China.

Fig. S1 XRD pattern of Bi_2S_3 prepared on ITO glass by SILAR method and standard pattern for orthorhombic structure Bi_2S_3 (JCPDS 17-320). The unmatched peaks are attributed to ITO, marked with asterisks.

Fig. S2 Raman spectra of (a) BiOI/Bi₂S₃-3, and (b) pure Bi₂S₃ obtained on the ITO/PET substrate.

Fig. S3 XPS analysis of the $BiOI/Bi_2S_3$ -0.5 film. (a) wide-scan spectrum, (b) high-resolution at bismuth region (Bi 4f), and (c) sulfur region (S 2s).

Fig. S4 The dark current density-voltage characteristics of (a) BiOI, (b) $BiOI/Bi_2S_3-0.5$, (c) $BiOI/Bi_2S_3-1$, (d) $BiOI/Bi_2S_3-2$, (e) $BiOI/Bi_2S_3-3$ and (f) Bi_2S_3 based flexible solar cells in the dark.

Fig. S5 The phase spectra of (a) BiOI, (b) $BiOI/Bi_2S_3-0.5$, (c) $BiOI/Bi_2S_3-1$, (d) $BiOI/Bi_2S_3-2$, (e) $BiOI/Bi_2S_3-3$ and (f) Bi_2S_3 films.

Fig.S6 The phase spectrum of pure Bi_2S_3 films.