Supporting Information

The Electronic States of a Double Carbon Vacancy Defect in Pyrene: A Model Study for Graphene

Francisco B. C. Machado,¹ Adélia J. A. Aquino^{2,3} and Hans Lischka^{2,3}

¹ Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900, São Paulo, Brazil

² Department of Chemistry and Biochemistry, Texas Tech University Lubbock, TX 79409-1061 (USA)

³ Institute for Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria

Table of Contents

Table 1S. Excitation energies (eV) for sixteen states of pyrene-2C, 6-31G* basis	p. S2
Table 2S. Excitation energies (eV) for sixteen states of pyrene-2C, 6-31G basis	p. S3
Table 3S. Natural orbital occupation, unrelaxed structure	p. S4
Table 4S. Excitation energies (eV) and optimized C ₇ -C ₈ distance, 6-31G basis	p. S7
Table 5S. Natural orbital occupation, relaxed structure	p. S8
Table 6S. Occupation schemes for the DFT calculations	p. S10
Table 7S. Excitation energies (eV) for the unrelaxed pyrene-2C structure using B3-LY	(P, PBE
and PBE0, together with the 6-31G* basis set.	p. S12
Table 8S. Excitation energies ΔE (eV) and optimized C ₇ -C ₈ distance (Å) ^a for the relaxed	pyrene-
2C structure using B3-LYP, PBE and PBE0 with the 6-31G* basis set.	p. S13
Figure 1S. Molecular orbitals for the 1Ag state computed at the B3-LYP/6-31G* level	l for the
unrelaxed structure	p. S14
Figure 2S. Linear Interpolation for sixteen states of pyrene-2C	p. S15
Figure 3S. Unpaired electron density plots for the ${}^{1}B_{2u}$ state	p. S16
Figure 4S. Active molecular orbitals for the ${}^{1}A_{g}$ state computed at the B3-LYP/6-31C	3* level,
relaxed structure	p. S17
Cartesian geometries p. 5	S18-S29

State	CASSCF	MRCI	MRCI+Q	B3-LYP	Config. ^{a,b}
$^{1}A_{g}$	0.000 ^c	0.000 ^c	0.000 ^c	0.000 ^c	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0}$ (54%)
${}^3\mathrm{B}_{3\mathrm{g}}$	1.607	1.635	1.646	1.616	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{2}11b_{1u}^{1}2b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0}$ (41%)
${}^{3}\mathrm{B}_{2u}$	1.741	1.799	1.827	2.378	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{1}2b_{2g}^{2}9b_{3g}^{1}2a_{u}^{0}(31\%)$
${}^{3}B_{1u}$	1.774	1.752	1.712	1.405	$12a_{g}^{2}3b_{3u}^{-1}10b_{2u}^{-0}2b_{1g}^{-2}11b_{1u}^{-2}2b_{2g}^{-1}9b_{3g}^{-0}2a_{u}^{-0} (57\%)$
${}^{3}A_{u}$	2.905	2.524	2.330	1.057	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{0}2a_{u}^{0}$ (58%)
${}^{1}A_{u}$	2.980	2.618	2.433	1.181	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{0}2a_{u}^{0}$ (55%)
$^{1}\mathrm{B}_{2\mathrm{u}}$	3.464	3.084	2.838	2.060	$12a_{g}^{2}3b_{3u}^{1}10b_{2u}^{0}2b_{1g}^{1}11b_{1u}^{2}2b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0}$ (44%)
${}^{3}\mathrm{B}_{1g}$	3.515	3.186	3.016	2.824	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{1}2a_{u}^{0}$ (48%)
${}^{3}\mathrm{B}_{3\mathrm{u}}$	3.520	3.029	2.787	1.439	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{1}11b_{1u}^{2}2b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0}$ (59%)
$^1\mathrm{B}_{1\mathrm{g}}$	3.525	3.217	3.054	1.989	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{1}2a_{u}^{0}$ (45%)
${}^{1}\mathrm{B}_{3\mathrm{u}}$	3.628	3.109	2.847	1.432	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{1}11b_{1u}^{2}2b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0}$ (59%)
${}^{1}B_{1u}$	4.067	3.807	3.669	2.080	$12a_{g}^{2}3b_{3u}^{1}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{0}2a_{u}^{0}$ (46%)
$^{1}\mathrm{B}_{3\mathrm{g}}$	4.125	4.144	4.125	5.402	$12a_{g}^{2}3b_{3u}^{1}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{1}2b_{2g}^{1}9b_{3g}^{1}2a_{u}^{0}$ (26%)
${}^{3}\mathrm{B}_{2g}$	4.221	3.743	3.507	2.238	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{-1}11b_{1u}^{-2}2b_{2g}^{-2}9b_{3g}^{-1}2a_{u}^{-0} (54\%)$
$^{1}\mathrm{B}_{2g}$	4.342	3.834	3.576	2.226	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{-1}11b_{1u}^{-2}2b_{2g}^{-2}9b_{3g}^{-1}2a_{u}^{-0} (54\%)$
${}^{3}A_{g}$	4.804	4.788	4.761	5.451	$12a_{g}^{2}3b_{3u}^{1}10b_{2u}^{0}2b_{1g}^{1}11b_{1u}^{1}2b_{2g}^{2}9b_{3g}^{1}2a_{u}^{0}$ (23%)

Table 1S. Excitation energies (eV) for sixteen states of pyrene-2C calculated with B3-LYP, CASSCF, MRCI and MRCI+Q using a CAS (8,8) reference space at the unrelaxed geometry with the 6-31G* basis set.

^a Closed shell part: $11a_g^2 2b_{3u}^2 9b_{2u}^2 1b_{1g}^2 10b_{1u}^2 1b_{2g}^2 8b_{3g}^2 1a_u^2$. ^b MR-CISD configuration percentage in parentheses. ^c Total energies (hartree): ¹A_g CASSCF/6-31G* = -535.6751476; ¹A_g MR-CISD/6-31G* = -536.9015422; ¹A_g MR-CISD + Q/6-31G* = -537.1933974; B3-LYP/6-31G* = -538.7885053.

State	CASSCF	MRCI	MRCI+Q	Config. ^{a,b}
$^{1}A_{g}$	0.000 ^c	0.000^{c}	0.000^{c}	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0}$ (54%)
${}^{3}\mathrm{B}_{3g}$	1.588	1.646	1.659	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{2}11b_{1u}^{1}2b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0}$ (42%)
$^{3}\mathrm{B}_{2\mathrm{u}}$	1.712	1.807	1.839	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{1}2b_{2g}^{2}9b_{3g}^{1}2a_{u}^{0}$ (31%)
${}^{3}B_{1u}$	1.794	1.742	1.678	$12a_{g}^{2}3b_{3u}^{1}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{0}2a_{u}^{0}$ (58%)
${}^{3}A_{u}$	2.966	2.592	2.408	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{0}2a_{u}^{0}$ (59%)
$^{1}A_{u}$	3.039	2.691	2.520	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{0}2a_{u}^{0}$ (56%)
${}^{1}\mathrm{B}_{2u}$	3.473	3.001	2.696	$12a_{g}^{2}3b_{3u}^{1}10b_{2u}^{0}2b_{1g}^{1}11b_{1u}^{2}2b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0}$ (43%)
${}^{3}\mathrm{B}_{1g}$	3.561	3.259	3.102	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{1}2a_{u}^{0}$ (49%)
${}^{3}\mathrm{B}_{3\mathrm{u}}$	3.625	3.110	2.871	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{1}11b_{1u}^{2}2b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0} (60\%)$
${}^{1}\mathrm{B}_{1g}$	3.572	3.291	3.142	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{1}2a_{u}^{0}$ (45%)
${}^{1}\mathrm{B}_{3\mathrm{u}}$	3.737	3.188	2.925	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{1}11b_{1u}^{2}2b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0} (60\%)$
${}^{1}\mathrm{B}_{1\mathrm{u}}$	4.168	3.918	3.795	$12a_{g}^{2}3b_{3u}^{1}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{0}2a_{u}^{0}$ (47%)
${}^{1}\mathrm{B}_{3g}$	4.185	4.225	4.192	$12a_{g}^{2}3b_{3u}^{1}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{1}2b_{2g}^{1}9b_{3g}^{1}2a_{u}^{0}$ (26%)
${}^{3}\mathrm{B}_{2g}$	4.303	3.822	3.593	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{1}11b_{1u}^{2}2b_{2g}^{2}9b_{3g}^{1}2a_{u}^{0}$ (54%)
$^{1}\mathrm{B}_{2g}$	4.429	3.912	3.657	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{1}11b_{1u}^{2}2b_{2g}^{2}9b_{3g}^{1}2a_{u}^{0}$ (55%)
${}^{3}A_{g}$	4.888	4.907	4.896	$12a_{g}^{2}3b_{3u}^{1}10b_{2u}^{0}2b_{1g}^{1}11b_{1u}^{1}2b_{2g}^{2}9b_{3g}^{1}2a_{u}^{0} (20\%)$

Table 2S. Excitation energies (eV) for sixteen states of pyrene-2C calculated with CASSCF, MRCI and MRCI+Q using a CAS (8,8) reference space at the unrelaxed geometry with the 6-31G basis set.

^a Closed shell part: $11a_g^2 2b_{3u}^2 9b_{2u}^2 1b_{1g}^2 10b_{1u}^2 1b_{2g}^2 8b_{3g}^2 1a_u^2$. ^b MR-CISD configuration percentage in parentheses. ^c Total energies (hartree): ¹A_g CASSCF/6-31G = -535.4933699; ¹A_g MR-CISD/6-31G = -536.3890734; ¹A_g MR-CISD + Q/6-31G = -536.5934390.

$MRCI - {}^{1}A_{g}$	$MRCI - {}^{3}B_{2\alpha}$	MRCI - ${}^{3}B_{1}$
Orbital (Nat. orb. occ.)	Orbital (Nat. orb. occ.)	Orbital (Nat. orb. occ.)
11a _g (1.98223039)	11a _g (1.98225072)	11a _g (1.98230100)
12ag (1.77548730)	12a _g (1.55047913)	12a _g (1.77372990)
13ag (0.00994673)	13ag (0.00994111)	13ag (0.00968966)
2b _{3u} (1.97947077)	2b _{3u} (1.97948033)	2b _{3u} (1.97936312)
3b _{3u} (0.13034127)	3b _{3u} (0.15094696)	3b _{3u} (0.99213563)
4b _{3u} (0.01159742)	4b _{3u} (0.01169473)	4b _{3u} (0.01227698)
9b _{2u} (1.98197754)	9b _{2u} (1.98199882)	9b _{2u} (1.98205227)
10b _{2u} (0.26054568)	10b _{2u} (0.79231361)	10b _{2u} (0.26383176)
11b _{2u} (0.01009639)	11b _{2u} (0.01008829)	11b _{2u} (0.00993043)
1b _{1g} (1.98188596)	1b _{1g} (1.98185141)	1b _{1g} (1.98067271)
2b _{1g} (1.90486568)	2b _{1g} (1.90366072)	2b _{1g} (1.94544653)
3b _{1g} (0.01546493)	3b _{1g} (0.01545098)	3b _{1g} (0.01629503)
10b _{1u} (1.98252852)	10b _{1u} (1.98255546)	10b _{1u} (1.98266724)
11b _{1u} (1.72213800)	11b _{1u} (1.19917848)	11b _{1u} (1.71921888)
12b _{1u} (0.00942145)	12b _{1u} (0.00941138)	12b _{1u} (0.00957787)
1b _{2g} (1.98245913)	1b _{2g} (1.98246173)	1b _{2g} (1.98174599)
2b _{2g} (1.86060782)	2b _{2g} (1.83978680)	2b _{2g} (0.99959562)
3b _{2g} (0.01480297)	3b _{2g} (0.01479446)	3b _{2g} (0.01487371)
8b _{3g} (1.98235891)	8b _{3g} (1.98235976)	8b _{3g} (1.98249202)
9b _{3g} (0.23220174)	9b _{3g} (0.44731725)	9b _{3g} (0.23368907)
10b _{3g} (0.00977092)	$10b_{3g}(0.00976031)$	10b _{3g} (0.00987048)

Table 3S. Natural orbital occupation for some selected orbitals for pyrene-2C at the unrelaxed geometry calculated at MRCI $(8,8)/6-31G^*$.

1a _u (1.97807478)	1a _u (1.97813966)	1a _u (1.97729842)
2a _u (0.09124009)	2a _u (0.09259716)	2a _u (0.04972482)
3a _u (0.01162084)	3a _u (0.01160721)	3a _u (0.01297954)

$MRCI - {}^{3}B_{2u}$	$MRCI - {}^{3}A_{u}$	$MRCI - {}^{1}A_{u}$
Orbital (Nat. orb. occ.)	Orbital (Nat. orb. occ.)	Orbital (Nat. orb. occ.)
11a _g (1.98224637)	11ag (1.98242448)	11a _g (1.98243489)
12ag (1.40742590)	12ag (1.87717443)	12ag (1.87606183)
13a _g (0.00993102)	13ag (0.00977030)	13ag (0.00973718)
2b _{3u} (1.97948549)	2b _{3u} (1.97906884)	2b _{3u} (1.97914533)
3b _{3u} (0.16034013)	3b _{3u} (0.12797177)	3b _{3u} (0.16461178)
4b _{3u} (0.01169117)	4b _{3u} (0.01092646)	4b _{3u} (0.01101337)
9b _{2u} (1.98199352)	9b _{2u} (1.98221168)	9b _{2u} (1.98221956)
10b _{2u} (0.59304587)	10b _{2u} (0.98975513)	10b _{2u} (0.96105449)
11b _{2u} (0.01009264)	11b _{2u} (0.00998619)	11b _{2u} (0.00998034)
1b _{1g} (1.98184771)	1b _{1g} (1.98029584)	1b _{1g} (1.98013750)
2b _{1g} (1.89811289)	2b _{1g} (1.92929624)	2b _{1g} (1.91918899)
3b _{1g} (0.01541596)	3b _{1g} (0.01403642)	3b _{1g} (0.01416114)
10b _{1u} (1.98256151)	10b _{1u} (1.98271802)	10b _{1u} (1.98273394)
11b _{1u} (1.33569067)	11b _{1u} (1.82394388)	11b _{1u} (1.82312683)
12b _{1u} (0.00941504)	12b _{1u} (0.00946143)	12b _{1u} (0.00946692)
1b _{2g} (1.98244158)	1b _{2g} (1.98180649)	1b _{2g} (1.98171750)
2b _{2g} (1.83189488)	2b _{2g} (0.90602246)	2b _{2g} (0.88100171)
3b _{2g} (0.01479696)	3b _{2g} (0.01342450)	3b _{2g} (0.01347195)
8b _{3g} (1.98236838)	8b _{3g} (1.98259837)	8b _{3g} (1.98261173)

9b _{3g} (0.65306112)	9b _{3g} (0.27586696)	9b _{3g} (0.30591264)
10b _{3g} (0.00977117)	10b _{3g} (0.00982871)	10b _{3g} (0.00983318)
1a _u (1.97813288)	1a _u (1.97661256)	1a _u (1.97631214)
2a _u (0.09661929)	2a _u (0.05150289)	2a _u (0.05031433)
3a _u (0.01163170)	3a _u (0.01129056)	3a _u (0.01159956)

State	CASSCF	MRCI ^b	MRCI+Q ^b	C ₇ -C ₈	Config. ^{c,d}
$^{1}A_{g}$	0.000 ^e	0.000 ^e	0.000 ^e	1.540	$\frac{12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{2}9b_{3g}^{0}}{2a_{u}^{0}(69\%)}$
${}^{3}\mathrm{B}_{2u}$	1.197	1.138	1.097	1.474	$12a_{g}^{\ 2}3b_{3u}^{\ 1}10b_{2u}^{\ 0}2b_{1g}^{\ 1}11b_{1u}^{\ 2}2b_{2g}^{\ 2}9b_{3g}\\ {}^{0}2a_{u}^{\ 0}~(75\%)$
${}^{3}B_{1u}$	1.637	1.652	1.620	1.527	$\frac{12{a_g}^2 3{b_{3u}}^1 10{b_{2u}}^0 2{b_{1g}}^2 11{b_{1u}}^2 2{b_{2g}}^1 9{b_{3g}}^0}{2{a_u}^0 (75\%)}$
$^{1}\mathrm{B}_{2\mathrm{u}}$	1.884	1.463	1.215	1.470	$\frac{12a_{g}^{2}3b_{3u}^{1}10b_{2u}^{0}2b_{1g}^{1}11b_{1u}^{1}2b_{2g}^{2}9b_{3g}^{0}}{2a_{u}^{0}(73\%)}$

Table 4S. Excitation energies (eV) and optimized C_7 - C_8 distance (Å)^a for the pyrene-2C structure using a CAS (8,8) reference space with 6-31G basis set.

 a C₇-C₈ distance = C₉-C₁₀ distance

^a C₇-C₈ distance = C₉-C₁₀ distance ^b Single point calculation at CASCSF (8,8) optimized geometries. ^c Closed shell part: $11a_g^22b_{3u}^29b_{2u}^21b_{1g}^210b_{1u}^21b_{2g}^28b_{3g}^21a_u^2$. ^d MRCI configuration percentage in parentheses. ^eTotal energies (hartree): ¹A_g CASSCF/6-31G = -535.7194348; ¹A_g MRCI/6-31G = -536.6165891; ¹A_g MRSD + Q/6-31G = -537.1542770.

$MRCI - {}^{1}A_{g}$	$MRCI - {}^{3}B_{2u}$	MRCI - ${}^{1}B_{2u}$	MRCI - ${}^{3}B_{1u}$		
Orbital (Nat. orb.	Orbital (Nat. orb.	Orbital (Nat. orb.	Orbital (Nat. orb.		
occ.)	occ.)	occ.)	occ.)		
11a _g (1.98244690)	11a _g (1.98245433)	11ag (1.98259581)	11a _g (1.98255383)		
12ag (1.97115409)	12ag (1.97343336)	12ag (1.97381176)	12ag (1.97171347)		
13ag (0.00969937)	13ag (0.00993824)	13ag (0.00988698)	13ag (0.01017639)		
2b _{3u} (1.97948847)	2b _{3u} (1.98019266)	2b _{3u} (1.97978520)	2b _{3u} (1.97941426)		
3b _{3u} (0.11400285)	3b _{3u} (0.99560639)	3b _{3u} (1.00876630)	3b _{3u} (0.99513072)		
4b _{3u} (0.01222407)	4b _{3u} (0.01228313)	4b _{3u} (0.01270746)	4b _{3u} (0.01302365)		
9b _{2u} (1.98167425)	9b _{2u} (1.98151527)	9b _{2u} (1.98163463)	9b _{2u} (1.98173715)		
10b _{2u} (0.02195904)	10b _{2u} (0.01973926)	10b _{2u} (0.01930241)	10b _{2u} (0.02169009)		
11b _{2u} (0.00962568)	11b _{2u} (0.00972347)	11b _{2u} (0.00966503)	11b _{2u} (0.00984887)		
1b _{1g} (1.98118337)	1b _{1g} (1.98095129)	1b _{1g} (1.98099602)	1b _{1g} (1.98066718)		
2b _{1g} (1.89572920)	2b _{1g} (0.99774654)	2b _{1g} (0.98617754)	2b _{1g} (1.97105340)		
3b _{1g} (0.01368875)	3b _{1g} (0.01367521)	3b _{1g} (0.01376918)	3b _{1g} (0.01380125)		
10b _{1u} (1.98336562)	10b _{1u} (1.98331911)	10b _{1u} (1.98345427)	10b _{1u} (1.98327069)		
11b _{1u} (1.97089137)	11b _{1u} (1.97311425)	11b _{1u} (1.97348141)	11b _{1u} (1.97139417)		
12b _{1u} (0.00990746)	12b _{1u} (0.01001421)	12b _{1u} (0.00994954)	12b _{1u} (0.00973438)		
1b _{2g} (1.98293906)	1b _{2g} (1.98228624)	1b _{2g} (1.98241830)	1b _{2g} (1.98203248)		
2b _{2g} (1.88771349)	2b _{2g} (1.97315830)	2b _{2g} (1.94324429)	2b _{2g} (0.99671738)		
3b _{2g} (0.01433113)	3b _{2g} (0.01378290)	3b _{2g} (0.01481650)	3b _{2g} (0.01456207)		
8b _{3g} (1.98253637)	8b _{3g} (1.98232673)	8b _{3g} (1.98244518)	8b _{3g} (1.98241765)		
9b _{3g} (0.02205049)	9b _{3g} (0.01978077)	9b _{3g} (0.01940281)	9b _{3g} (0.02161946)		

Table 5S. Natural orbital occupation for some selected orbitals for pyrene-2C at the relaxed geometry calculated at MRCI $(8,8)/6-31G^*$.

10b _{3g} (0.00989123)	10b _{3g} (0.00992410)	10b _{3g} (0.00984799)	10b _{3g} (0.00980780)
1a _u (1.97831651)	1a _u (1.97617198)	1a _u (1.97435308)	1a _u (1.97833598)
2a _u (0.09137147)	2a _u (0.02136074)	2a _u (0.05235988)	2a _u (0.02377575)
3a _u (0.01025735)	3a _u (0.01219772)	3a _u (0.01040753)	3a _u (0.01230762)

	$^{1}A_{g}$	³ B _{3g}	${}^{3}B_{2u}$	³ B _{1u}	³ A _u	¹ A _u	${}^{1}B_{2u}$	³ B _{1g}
alpha								
ag	1-12	1-12	1-12	1-12	1-12	1-12	1-12	1-12
b _{3u}	1-2	1-2	1-2	1-3	1-2	1-2	1-3	1-2
b _{2u}	1-9	1-10	1-9	1-9	1-10	1-10	1-9	1-9
b_{1g}	1-2	1-2	1-2	1-2	1-2	1-2	1	1-2
b_{1u}	1-11	1-11	1-11	1-11	1-11	1-11	1-11	1-11
b _{2g}	1-2	1-2	1-2	1-2	1-2	1	1-2	1-2
b _{3g}	1-8	1-8	1-9	1-8	1-8	1-8	1-8	1-9
a _u	1	1	1	1	1	1	1	1
beta								
ag	1-12	1-12	1-12	1-12	1-12	1-12	1-12	1-12
b _{3u}	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
b_{2u}	1-9	1-9	1-9	1-9	1-9	1-9	1-9	1-9
b_{1g}	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
b_{1u}	1-11	1-10	1-10	1-11	1-11	1-11	1-11	1-11
b _{2g}	1-2	1-2	1-2	1	1	1-2	1-2	1
b _{3g}	1-8	1-8	1-8	1-8	1-8	1-8	1-8	1-8
a _u	1	1	1	1	1	1	1	1
	³ B _{3u}	${}^{1}B_{1g}$	${}^{1}B_{3u}$	¹ B _{1u}	${}^{1}\mathbf{B}_{3g}$	${}^{3}B_{2g}$	${}^{1}\mathbf{B}_{2g}$	³ A _g

 Table 6S. Occupation schemes for the DFT calculations.

alpha								
ag	1-12	1-12	1-12	1-12	1-12	1-12	1-12	1-12
b _{1g}	1-2	1-2	1-2	1-3	1-3	1-2	1-2	1-3
b _{2g}	1-10	1-9	1-10	1-9	1-9	1-9	1-9	1-9
b _{3g}	1-2	1-2	1	1-2	1-2	1-2	1-2	1-2
a _u	1-11	1-11	1-11	1-11	1-11	1-11	1-11	1-11
b_{1u}	1-2	1-2	1-2	1	1	1-2	1-2	1-2
b _{2u}	1-8	1-8	1-8	1-8	1-8	1-9	1-8	1-9
b _{3u}	1	1	1	1	1	1	1	1
beta								
a _g								
b_{1g}	1-12	1-12	1-12	1-12	1-12	1-12	1-12	1-12
b _{2g}	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
b _{3g}	1-9	1-9	1-9	1-9	1-9	1-9	1-9	1-9
a _u	1	1-2	1-2	1-2	1-2	1	1	1
b_{1u}	1-11	1-11	1-11	1-11	1-10	1-11	1-11	1-11
b _{2u}	1-2	1	1-2	1-2	1-2	1-2	1-2	1-2
b _{3u}	1-8	1-9	1-8	1-8	1-9	1-8	1-9	1-8
	1	1	1	1	1	1	1	1

State	B3-LYP	PBE	PBE0	Configuration ^a
$^{1}A_{g}$	0.000 ^b	0.000 ^b	0.000 ^b	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0}$
${}^{3}\mathrm{B}_{3\mathrm{g}}$	1.616	1.620	1.634	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{2}11b_{1u}^{1}2b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0}$
$^{3}B_{2u}$	1.927	1.918	1.930	$ 12a_g^{\ 2}3b_{3u}^{\ 1}10b_{2u}^{\ 0}2b_{1g}^{\ 1}11b_{1u}^{\ 2}2b_{2g}^{\ 2}9b_{3g}^{\ 0}2a_u^{\ 0}$
${}^{3}B_{1u}$	1.405	1.553	1.328	$12a_{g}^{2}3b_{3u}^{-1}10b_{2u}^{-0}2b_{1g}^{-2}11b_{1u}^{-2}2b_{2g}^{-1}9b_{3g}^{-0}2a_{u}^{-0}$
${}^{3}A_{u}$	1.057	1.210	1.099	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{0}2a_{u}^{0}$
$^{1}A_{u}$	1.181	1.314	1.238	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{0}2a_{u}^{0}$
$^{1}\mathrm{B}_{2\mathrm{u}}$	2.060	1.983	2.072	$12a_{g}^{2}3b_{3u}^{1}10b_{2u}^{0}2b_{1g}^{-1}11b_{1u}^{-2}2b_{2g}^{-2}9b_{3g}^{-0}2a_{u}^{0}$
${}^{3}B_{1g}$	1.855	1.965	1.919	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{1}2a_{u}^{0}$
${}^{3}\mathrm{B}_{3\mathrm{u}}$	1.439	1.493	1.516	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{-1}11b_{1u}^{-2}2b_{2g}^{-2}9b_{3g}^{-0}2a_{u}^{0}$
${}^{1}\mathrm{B}_{1\mathrm{g}}$	1.989	2.075	2.069	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{2}2b_{2g}^{1}9b_{3g}^{1}2a_{u}^{0}$
¹ B _{3u}	1.432	1.498	1.500	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{-1}11b_{1u}^{-2}2b_{2g}^{-2}9b_{3g}^{-0}2a_{u}^{0}$
${}^{1}B_{1u}$	2.080	1.919	2.133	$12a_{g}^{2}3b_{3u}^{-1}10b_{2u}^{-0}2b_{1g}^{-2}11b_{1u}^{-2}2b_{2g}^{-1}9b_{3g}^{-0}2a_{u}^{-0}$
$^{1}\mathrm{B}_{3\mathrm{g}}$	2.407	2.183	2.495	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{1}2b_{1g}^{2}11b_{1u}^{1}2b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0}$
$^{3}\mathrm{B}_{2\mathrm{g}}$	2.238	2.248	2.337	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{-1}11b_{1u}^{-2}2b_{2g}^{-2}9b_{3g}^{-1}2a_{u}^{0}$
$^{1}\mathrm{B}_{2\mathrm{g}}$	2.226	2.251	2.316	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{1}11b_{1u}^{2}2b_{2g}^{2}9b_{3g}^{1}2a_{u}^{0}$
³ A _g	5.451	4.976	5.604	$12a_{g}^{2}3b_{3u}^{1}10b_{2u}^{0}2b_{1g}^{1}11b_{1u}^{1}2b_{2g}^{2}9b_{3g}^{1}2a_{u}^{0}$

Table 7S. Excitation energies (eV) for the unrelaxed pyrene-2C structure using B3-LYP, PBE and PBE0, together with the 6-31G* basis set.

^a Closed shell part: $11a_g^2 2b_{3u}^2 9b_{2u}^2 1b_{1g}^2 10b_{1u}^2 1b_{2g}^2 8b_{3g}^2 1a_u^2$. ^b Total energies (hartree): 1Ag B3-LYP = -538.7885053; PBE = -538.4651999; PBE0 = -538.4763159.

State	B3-I	LYP	PI	BE	PB	EO	Config. ^b
	_						
	ΔΕ	C ₇ -C ₈	ΔΕ	C ₇ -C ₈	ΔE	C ₇ -C ₈	
$^{1}A_{g}$	0.000 ^c	1.515	0.000 ^c	1.515	0.000 ^c	1.506	$12a_{g}^{2}3b_{3u}^{0}10b_{2u}^{0}2b_{1g}^{2}11b_{1u}^{2}2$
${}^{3}B_{2u}$	0.441	1.454	0.493	1.459	0.384	1.448	$b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0}$ $12a_{g}^{2}3b_{3u}^{1}10b_{2u}^{0}2b_{1g}^{-1}11b_{1u}^{-2}2$ $b_{2g}^{-2}9b_{2g}^{-0}2a_{u}^{-0}$
$^{1}\mathrm{B}_{2u}$	0.479	1.453	0.525	1.458	0.417	1.446	$\frac{12a_{g}^{2}3b_{3u}^{2}10b_{2u}^{0}2b_{1g}^{1}11b_{1u}^{2}2}{2}$
${}^{3}\mathrm{B}_{1\mathrm{u}}$	1.430	1.502	1.570	1.504	1.353	1.494	$b_{2g}^{2}9b_{3g}^{0}2a_{u}^{0}$ $12a_{g}^{2}3b_{3u}^{-1}10b_{2u}^{-0}2b_{1g}^{-2}11b_{1u}^{-2}2$ $b_{2g}^{-1}9b_{3g}^{-0}2a_{u}^{-0}$

Table 8S: Excitation energies ΔE (eV) and optimized C₇-C₈ distance (Å)^a for the relaxed pyrene-2C structure using B3-LYP, PBE and PBE0 with the 6-31G* basis set.

^a C₇-C₈ and C₉-C₁₀ distances are symmetry equivalent. ^b Closed shell part: $11a_g^2 2b_{3u}^2 9b_{2u}^2 1b_{1g}^2 10b_{1u}^2 1b_{2g}^2 8b_{3g}^2 1a_u^2$. ^c ¹A_g B3-LYP = -539.05378069; PBE = -538.7157240; PBE0 = -538.7620796.

Figure 1S. Molecular orbitals for the ${}^{1}A_{g}$ state computed at the B3-LYP/6-31G* level for the unrelaxed structure.

Figure 2S. Linear Interpolation for sixteen states of pyrene-2C computed at MRCI + Q (8,8)/6-31G* level. Paths between the structures with C_7 - C_8 and C_9 - $C_{10} = 1.467$ to 2.744 Å; energies are relative to $E({}^{1}A_{g}) = -537.4386964$ hartree.

Figure 3S. Unpaired electron density plots for the ${}^{1}B_{2u}$ state using the MR-CISD/6-31G* approach. a), unrelaxed geometry, b), relaxed geometry. Isodensity value is 0.007 *e*/bohr³.

Figure 4S. Active molecular orbitals for the ${}^{1}A_{g}$ state computed at the B3-LYP/6-31G* level for the relaxed structure.

Cartesian geometries (Å)

Pyrene

Geometry optimization at DFT/B3-LYP_Gaussian/6-31G** level

С	0.00000	0.00000	3.523415
С	0.00000	0.00000	-3.523415
С	0.00000	1.210522	2.832749
С	0.00000	1.210522	-2.832749
С	0.00000	-1.210522	2.832749
С	0.00000	-1.210522	-2.832749
С	0.00000	1.236204	1.428935
С	0.00000	1.236204	-1.428935
С	0.00000	-1.236204	1.428935
С	0.00000	-1.236204	-1.428935
С	0.00000	0.00000	0.713276
С	0.00000	0.00000	-0.713276
С	0.00000	2.463838	0.680667
С	0.00000	2.463838	-0.680667
С	0.00000	-2.463838	-0.680667
С	0.00000	-2.463838	0.680667
Н	0.00000	2.149861	-3.379217
Н	0.00000	-3.401692	1.229891
Н	0.00000	-3.401692	-1.229891
Н	0.00000	3.401692	1.229891
Н	0.00000	0.00000	4.609494
Н	0.00000	2.149861	3.379217
Н	0.00000	-2.149861	3.379217
Н	0.00000	3.401692	-1.229891
Η	0.00000	0.00000	-4.609494
Н	0.00000	-2.149861	-3.379217

Pyrene-2C-relaxed

Geometry optimization at CASSCF(8,8)/6-31G* level

$^{1}\mathbf{A}_{g}$			
С	0.00000	0.00000	3.842357
С	0.00000	0.00000	-3.842357
С	0.00000	1.138177	3.044674
С	0.00000	-1.138177	3.044674
С	0.00000	1.138177	-3.044674
С	0.00000	-1.138177	-3.044674
С	0.00000	0.767298	1.698493
С	0.00000	-0.767298	1.698493
С	0.00000	0.767298	-1.698493
С	0.00000	-0.767298	-1.698493
С	0.00000	1.724327	0.693931
С	0.00000	-1.724327	0.693931
С	0.00000	1.724327	-0.693931
С	0.00000	-1.724327	-0.693931
Н	0.00000	2.152054	3.393591
Н	0.00000	-2.152054	3.393591
Н	0.00000	2.152054	-3.393591
Н	0.00000	-2.152054	-3.393591
Н	0.00000	2.722714	1.097789
Н	0.00000	-2.722714	1.097789
Н	0.00000	2.722714	-1.097789
Н	0.00000	-2.722714	-1.097789
Н	0.00000	0.00000	4.916072
Н	0.00000	0.00000	-4.916072

2	
3	D
	Ko.
	$\boldsymbol{\nu}_{20}$

С	0.00000	0.00000	3.862187
С	0.00000	0.00000	-3.862187
С	0.00000	1.116529	3.039605
С	0.00000	-1.116529	3.039605
С	0.00000	1.116529	-3.039605
С	0.00000	-1.116529	-3.039605
С	0.00000	0.735975	1.672155
С	0.00000	-0.735975	1.672155
С	0.00000	0.735975	-1.672155
С	0.00000	-0.735975	-1.672155
С	0.00000	1.734203	0.691061
С	0.00000	-1.734203	0.691061
С	0.00000	1.734203	-0.691061
С	0.00000	-1.734203	-0.691061
Н	0.00000	2.137470	3.372057
Н	0.00000	-2.137470	3.372057
Н	0.00000	2.137470	-3.372057
Н	0.00000	-2.137470	-3.372057
Н	0.00000	2.726052	1.110185
Н	0.00000	-2.726052	1.110185
Н	0.00000	2.726052	-1.110185
Н	0.00000	-2.726052	-1.110185
Н	0.00000	0.00000	4.933710
Н	0.00000	0.00000	-4.933710

 ${}^{3}B_{1u}$

С	0.00000	0.00000	3.855285
С	0.00000	0.00000	-3.855285
С	0.00000	1.148351	3.023772
С	0.00000	-1.148351	3.023772
С	0.00000	1.148351	-3.023772
С	0.00000	-1.148351	-3.023772
С	0.00000	0.760240	1.716697
С	0.00000	-0.760240	1.716697
С	0.00000	0.760240	-1.716697
С	0.00000	-0.760240	-1.716697
С	0.00000	1.771413	0.666093
С	0.00000	-1.771413	0.666093
С	0.00000	1.771413	-0.666093
С	0.00000	-1.771413	-0.666093
Н	0.00000	2.163600	3.368337
Н	0.00000	-2.163600	3.368337
H	0.00000	2.163600	-3.368337
Н	0.00000	-2.163600	-3.368337
Н	0.00000	2.758953	1.095374
Н	0.00000	-2.758953	1.095374
Н	0.00000	2.758953	-1.095374
Н	0.00000	-2.758953	-1.095374
Н	0.00000	0.00000	4.927761
Н	0.00000	0.00000	-4.927761

 $^{1}\mathrm{B}_{2\mathrm{u}}$

С	0.000000	0.00000	3.865724
С	0.00000	0.00000	-3.865724
С	0.00000	1.118101	3.045050
С	0.00000	-1.118101	3.045050
С	0.00000	1.118101	-3.045050
С	0.00000	-1.118101	-3.045050
С	0.00000	0.733372	1.671204
С	0.00000	-0.733372	1.671204
С	0.00000	0.733372	-1.671204
С	0.00000	-0.733372	-1.671204
С	0.00000	1.729144	0.688085
С	0.00000	-1.729144	0.688085
С	0.00000	1.729144	-0.688085
С	0.00000	-1.729144	-0.688085
H	0.00000	2.139334	3.374685
Н	0.00000	-2.139334	3.374685
Н	0.00000	2.139334	-3.374685
Н	0.00000	-2.139334	-3.374685
Н	0.00000	2.720855	1.107745
Н	0.00000	-2.720855	1.107745
Н	0.00000	2.720855	-1.107745
Н	0.00000	-2.720855	-1.107745
Н	0.00000	0.00000	4.937475
Н	0.00000	0.00000	-4.937475

 $^{1}\mathrm{A}_{\mathrm{g}}$

С	0.00000	0.00000	3.851719
С	0.00000	0.00000	-3.851719
С	0.00000	1.139079	3.050673
С	0.00000	-1.139079	3.050673
С	0.00000	1.139079	-3.050673
С	0.00000	-1.139079	-3.050673
С	0.00000	0.769903	1.698610
С	0.00000	-0.769903	1.698610
С	0.00000	0.769903	-1.698610
С	0.00000	-0.769903	-1.698610
С	0.00000	1.726772	0.694097
С	0.00000	-1.726772	0.694097
С	0.00000	1.726772	-0.694097
С	0.00000	-1.726772	-0.694097
Н	0.00000	2.150517	3.398431
Н	0.00000	-2.150517	3.398431
Н	0.00000	2.150517	-3.398431
Н	0.00000	-2.150517	-3.398431
Н	0.00000	2.724369	1.097732
Н	0.00000	-2.724369	1.097732
Н	0.00000	2.724369	-1.097732
Н	0.00000	-2.724369	-1.097732
Н	0.00000	0.00000	4.922214
Н	0.00000	0.00000	-4.922214

2.	_
3	D
	D 211
	⊷ ∠u

С	0.00000	0.00000	3.869223
С	0.00000	0.00000	-3.869223
С	0.00000	1.120420	3.046832
С	0.00000	-1.120420	3.046832
С	0.00000	1.120420	-3.046832
С	0.00000	-1.120420	-3.046832
С	0.00000	0.737017	1.674628
С	0.00000	-0.737017	1.674628
С	0.00000	0.737017	-1.674628
С	0.000000	-0.737017	-1.674628
С	0.000000	1.733286	0.691050
С	0.00000	-1.733286	0.691050
С	0.000000	1.733286	-0.691050
С	0.000000	-1.733286	-0.691050
Н	0.00000	2.138977	3.378254
Н	0.00000	-2.138977	3.378254
Н	0.000000	2.138977	-3.378254
Н	0.00000	-2.138977	-3.378254
Н	0.00000	2.724489	1.110197
Н	0.00000	-2.724489	1.110197
Н	0.000000	2.724489	-1.110197
Н	0.00000	-2.724489	-1.110197
Н	0.00000	0.00000	4.937649
Н	0.000000	0.00000	-4.937649

 ${}^{3}B_{1u}$

С	0.00000	0.00000	3.862978
С	0.00000	0.00000	-3.862978
С	0.00000	1.149167	3.029419
С	0.00000	-1.149167	3.029419
С	0.00000	1.149167	-3.029419
С	0.00000	-1.149167	-3.029419
С	0.00000	0.763461	1.714790
С	0.00000	-0.763461	1.714790
С	0.00000	0.763461	-1.714790
С	0.00000	-0.763461	-1.714790
С	0.00000	1.772597	0.667994
С	0.00000	-1.772597	0.667994
С	0.00000	1.772597	-0.667994
С	0.00000	-1.772597	-0.667994
Н	0.00000	2.161596	3.373426
Н	0.00000	-2.161596	3.373426
Н	0.00000	2.161596	-3.373426
Н	0.00000	-2.161596	-3.373426
Н	0.00000	2.758546	1.098543
Н	0.00000	-2.758546	1.098543
Н	0.00000	2.758546	-1.098543
Н	0.00000	-2.758546	-1.098543
Н	0.00000	0.00000	4.932825
Н	0.00000	0.00000	-4.932825

 $^{1}B_{2u}$

С	0.000000	0.00000	3.872540
C	0.00000	0.00000	-3.872540
C	0.00000	1.122050	3.051970
C	0.000000	-1.122050	3.051970
C	0.00000	1.122050	-3.051970
C	0.000000	-1.122050	-3.051970
C	0.00000	0.735019	1.673670
C	0.000000	-0.735019	1.673670
C	0.000000	0.735019	-1.673670
C	0.00000	-0.735019	-1.673670
C	0.00000	1.728557	0.688142
C	0.000000	-1.728557	0.688142
C	0.00000	1.728557	-0.688142
C	0.000000	-1.728557	-0.688142
Н	0.00000	2.140726	3.381279
Н	0.000000	-2.140726	3.381279
Н	0.000000	2.140726	-3.381279
Н	0.000000	-2.140726	-3.381279
Н	0.000000	2.719760	1.106969
Н	0.000000	-2.719760	1.106969
Н	0.000000	2.719760	-1.106969
Н	0.000000	-2.719760	-1.106969
Н	0.000000	0.00000	4.941077
Н	0.00000	0.00000	-4.941077

Geometry optimization at B3-3LYP/6-31G* level

 $^{1}A_{g}$

С	0.000000	3.8806424	0.000000
С	0.000000	-3.8806424	0.000000
С	1.1445885	3.0707191	0.000000
С	1.1445885	-3.0707191	-0.000000
С	-1.1445885	3.0707191	0.000000
С	-1.1445885	-3.0707191	0.000000
С	0.7572666	1.7149436	0.000000
С	0.7572666	-1.7149436	0.000000
С	-0.7572666	1.7149436	0.000000
С	-0.7572666	-1.7149436	0.000000
С	1.7141647	0.7005301	-0.000000
С	1.7141647	-0.7005301	0.000000
С	-1.7141647	-0.7005301	0.000000
С	-1.7141647	0.7005301	0.000000
Н	2.1728094	-3.4130571	0.000000
Н	-2.7265930	1.1054116	0.000000
Н	-2.7265930	-1.1054116	-0.000000
Н	2.7265930	1.1054116	0.000000
Н	0.000000	4.9657675	0.000000
Н	2.1728094	3.4130571	0.000000
Н	-2.1728094	3.4130571	0.000000
Н	2.7265930	-1.1054116	0.000000
Н	0.000000	-4.9657675	0.000000
Н	-2.1728094	-3.4130571	-0.000000

 $^{3}B_{2u}$

С	-0.0000000	3.9033487	0.000000
С	-0.0000000	-3.9033487	0.000000
С	1.1253816	3.0720677	-0.000000
С	1.1253816	-3.0720677	0.000000
С	-1.1253816	3.0720677	-0.000000
С	-1.1253816	-3.0720677	0.000000
С	0.7272061	1.6941606	0.000000
С	0.7272061	-1.6941606	-0.000000
С	-0.7272061	1.6941606	0.000000
С	-0.7272061	-1.6941606	0.000000
С	1.7234258	0.6951769	0.000000
С	1.7234258	-0.6951769	0.000000
С	-1.7234258	-0.6951769	0.000000
С	-1.7234258	0.6951769	0.000000
Н	2.1607251	-3.3975440	0.000000
Н	-2.7287790	1.1161024	0.000000
Н	-2.7287790	-1.1161024	0.000000
Н	2.7287790	1.1161024	0.000000
Н	0.000000	4.9863933	-0.000000
Н	2.1607251	3.3975440	0.000000
Н	-2.1607251	3.3975440	0.000000
Н	2.7287790	-1.1161024	-0.000000
Н	0.000000	-4.9863933	-0.000000
Н	-2.1607251	-3.3975440	-0.000000

 ${}^{3}B_{1u}$

С	0.000000	3.8862799	-0.000000
С	0.000000	-3.8862799	-0.000000
С	1.1514499	3.0525606	0.000000
С	1.1514499	-3.0525606	0.000000
С	-1.1514499	3.0525606	0.000000
С	-1.1514499	-3.0525606	0.000000
С	0.7512270	1.7201799	0.000000
С	0.7512270	-1.7201799	0.000000
С	-0.7512270	1.7201799	-0.000000
С	-0.7512270	-1.7201799	-0.000000
С	1.7531609	0.6802842	0.000000
С	1.7531609	-0.6802842	0.000000
С	-1.7531609	-0.6802842	0.000000
С	-1.7531609	0.6802842	-0.000000
Н	2.1806727	-3.3914315	0.000000
Н	-2.7554013	1.1082395	0.000000
Н	-2.7554013	-1.1082395	-0.000000
Н	2.7554013	1.1082395	0.000000
Н	0.000000	4.9707360	0.000000
Н	2.1806727	3.3914315	-0.000000
Н	-2.1806727	3.3914315	0.000000
Н	2.7554013	-1.1082395	-0.000000
Н	0.000000	-4.9707360	0.000000
Н	-2.1806727	-3.3914315	0.000000

 $^{1}B_{2u}$

С	0.000000	3.9072825	0.000000
С	0.000000	-3.9072825	0.000000
С	1.1265716	3.0749468	0.000000
С	1.1265716	-3.0749468	0.000000
С	-1.1265716	3.0749468	-0.000000
С	-1.1265716	-3.0749468	0.000000
С	0.7262653	1.6946500	-0.000000
С	0.7262653	-1.6946500	0.000000
С	-0.7262653	1.6946500	0.000000
С	-0.7262653	-1.6946500	-0.000000
С	1.7212139	0.6944152	0.000000
С	1.7212139	-0.6944152	-0.000000
С	-1.7212139	-0.6944152	-0.000000
С	-1.7212139	0.6944152	-0.000000
Н	2.1621310	-3.3992554	0.000000
Н	-2.7267128	1.1149602	0.000000
Н	-2.7267128	-1.1149602	0.000000
Н	2.7267128	1.1149602	0.000000
Н	0.000000	4.9903494	0.000000
Н	2.1621310	3.3992554	0.000000
Н	-2.1621310	3.3992554	0.000000
Н	2.7267128	-1.1149602	0.000000
Н	0.000000	-4.9903494	0.000000
Н	-2.1621310	-3.3992554	0.000000