Supporting information for 'Electrochemical Investigation of the Role of MnO₂ Nanorod Catalysts in Water Containing and Anhydrous Electrolytes for Li-O₂ Battery Applications'

Hugh Geaney^{a,b} and Colm O'Dwyer*a,b

Figure S2: Low magnification EDX mapping of discharge products on a MnO_2 nanorod cathode. The composite signals overlaid on the SEM image (a) show that there is a large O signal from each agglomerate. The stronger C EDX signal from the background MnO_2 nanorod support than the discharge products suggests that they are not Li_2CO_3 but this will be further examined in future.

Figure S3: XRD analysis of MnO_2 cathode before and after single discharge in Sulfolane based electrolyte (100 μ A applied current). There is no indication of the formation of crystalline Li_2O_2 (or any other crystalline discharge product) on the cathode surface.

Figure S4: (a,b) SEM images of MnO_2 cathode discharged at 500 μ A with corresponding discharge profile (c).

Figure S5: Additional images of examples of discharge products formed on pure MnO_2 cathodes at the same currents investigated in the main paper

Figure S6: Additional single current discharge for MnO_2 cathodes showing progression to much larger agglomerates at 25 and 10 μ A.

Figure S7: SEM images of discharge products formed on Super P cathode at a current rate of 100 mAg⁻¹. Large amounts of Li_2O_2 particles (typically <500 nm in diameter) can be seen at low magnification (a, b) while the characteristic toroidal shape previously noted for Li_2O_2 can be seen in the higher magnification image in c).

Figure S8: XRD analysis of Super P carbon cathode before and after discharge (100 μ A applied current) in sulfolane based electrolyte showing clear evidence of crystalline Li₂O₂ on the cathode surface.

Figure S9: Discharge profiles for Super P cathodes discharged in sulfolane at various current rates

Figure S10: Additional SEM images of the discharge products formed on Super P cathodes at the same currents applied in the main text.

Figure S11: SEM images taken of Super P cathodes discharged at (a-c) 175 μA , (d-f) 25 μA , (g-i) 10 μA in sulfolane

Figure S12: SEM images showing clumping of MnO_2 nanorods in 50% MnO_2 /Super P cathode. Large bundles > 10 micron in size are noted.

Figure S13: Additional images showing localization of large agglomerates to areas where MnO₂ bundles are located.

Figure S14: Discharge profiles of Super P cathodes in DMSO electrolyte

Figure S15: Super P cathode after single discharge at 100 μ A with anhydrous DMSO electrolyte. In addition to reflections consistent with Li₂O₂, additional reflections attributed to LiOH.H₂O were also noted.

Figure S16: 10 discharge/charge profiles for Super P cathode with DMSO electrolyte showing dramatically enhanced stability compared to sulfolane electrolyte.