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In principle, the electric potential field, , should be obtained by solving Gauss's 𝜙

law. However, since electroneutrality is a valid approximation throughout the electrolyte 

up to the thin depletion boundary, and ion-ion electrostatic interactions are screened out 

by counter ions because the Debye length under present conditions ( ) is 𝜆𝐷 = 0.27 𝑛𝑚

smaller than the average interionic separation ( ), Gauss’s equation 𝑅𝑖,𝑗 = 1.2 𝑛𝑚

approximately reduces to Laplace’s equation. Since temperature profile is also 

described by Laplace’s equation, we define a generic parameter  as follows:   𝑈

                                                                                                  (SE1)𝑈 = [𝜙(𝑥,𝑦),𝑇(𝑥,𝑦)]

where  and  are coordinates parallel and normal to the cathode. Hence we have:𝑥 𝑦
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∂2𝑈

∂𝑥2
+

∂2𝑈

∂𝑦2
= 0

(SE2)

with the following boundary conditions: 

                                                                                                (SE3)𝑈(𝑥,0) = [𝑉 ‒ ,𝑇 ‒ ]

                                                                       (SE4)𝑈(𝑥,𝐿) = [𝑉 + ,𝑇 + ]

because the high electrical and thermal conductivities of Li0 ensure that the surface of 

cathodic electrodeposits is equipotential and isothermal at  at all times. To [𝑉 ‒ ,𝑇 ‒ ]

ensure a smooth surface, the equipotential surface extends slightly beyond the bonding 

radius of Li0 at ( ).1.3  𝑟 +

                                                                                                    (SE5)𝑈𝑑𝑒𝑛𝑑𝑟𝑖𝑡𝑒 = 𝑈𝑐𝑎𝑡ℎ𝑜𝑑𝑒

We solved (SE2) using a finite difference method in a (280 x 280) grid defined by 

equation (SE6) [1]:

                                               (SE6)                                                    
𝑈𝑖,𝑗 =

1
4

(𝑈𝑖 + 1,𝑗 + 𝑈𝑖 ‒ 1,𝑗 + 𝑈𝑖,𝑗 + 1 + 𝑈𝑖,𝑗 ‒ 1)

Periodic boundary conditions (PBC) were assumed in the  direction. i.e., every Li+ 𝑥

exiting the domain from right/left boundaries enters from the opposite side. The electric 

field was obtained numerically as:

                                              (SE7) 
𝐸𝑖,𝑗 =‒

𝜙𝑖 + 1,𝑗 ‒ 𝜙𝑖 ‒ 1,𝑗

2Δ𝑥
𝑖 ‒

𝜙𝑖,𝑗 + 1 ‒ 𝜙𝑖,𝑗 ‒ 1

2Δ𝑦
𝑗

We further considered that the overpotential for Li+ reduction is so small that Li+ should 

be reduced with unit probability once it reaches the cathode within  at the applied 1.3  𝑟 +

potentials.
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The temperature distribution can be also obtained from E2. Since the conductivity of the 

polymethyl-methacrylate separators is significantly lower than the metal collectors (

), we assume that the heat within the cell flows along the y-coordinate normal to 𝛼𝐿𝑖,𝐶𝑢 ≫ 𝛼𝑃𝑀𝑀𝐴 

the electrodes. So we have:

                                                 (SE8)

∂𝑇
∂𝑡

=  𝛼
∂2𝑇

∂𝑦2

Also since the time scale of temperature relaxation is much faster than ion transport, we will 

assume a quasi-steady state distribution throughout, that is, temperature profiles are time 

independent, hence:             

             (SE9)

∂2𝑇

∂𝑦2
= 0

The imposed boundary conditions are:             

                 (SE10){𝑇(0) = 𝑇 ‒
𝑇(𝐿) = 𝑇 + �

Therefore, we obtain a linear temperature distribution between anode and cathode, which is 

independent of the solvent thermal conductivity: 

              (SE11)
𝑇(𝑦) =

𝑇 + ‒ 𝑇 ‒

𝐿
 𝑥 + 𝑇 ‒

Figure 1 shows the distributions of normalized temperature,  , defined by |𝑇|

SE12: 

                                                       
|𝑇| =

𝑇 ‒  𝑇 +

𝑇 ‒ ‒  𝑇 +

(SE12)

as a function of normalized height  over convex and concave regions of Li0 𝑦/𝐿

electrodeposits. The concave/convex morphology has been imitated by a sinusoidal 

function during one period and the higher curvatures have been approximated with 

higher sin powers.
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Figure S1 - Normalized temperature distribution over convex and concave regions as function 
of normalized cell height (y/L) and width (x/H). Inset:  normal gradients to the electrodes over |𝑇|
convex (blue traces) and concave (red traces) regions as function of increasing positive and 
negative curvatures , respectively.𝜅
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