Supplemental Information for

Thermal Relaxation of Lithium Dendrites

Asghar Aryanfar^{1*}, Daniel J. Brooks², Boris V. Merinov², William A. Goddard III², Agustin J. Colussi^{1*} and Michael R. Hoffmann¹

¹Linde Center for Global Environmental Science; ²Materials & Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, U.S.A.

In principle, the electric potential field, ϕ , should be obtained by solving Gauss's law. However, since electroneutrality is a valid approximation throughout the electrolyte up to the thin depletion boundary, and ion-ion electrostatic interactions are screened out by counter ions because the Debye length under present conditions ($\lambda_p = 0.27 \text{ } nm$) is smaller than the average interionic separation ($R_{ij} = 1.2 \text{ } nm$), Gauss's equation approximately reduces to Laplace's equation. Since temperature profile is also described by Laplace's equation, we define a generic parameter U as follows:

$$U = [\phi(x,y),T(x,y)]$$
(SE1)

where *x* and *y* are coordinates parallel and normal to the cathode. Hence we have:

^{*} Corresponding Authors: AA: aryanfar@caltech.edu, AJC: ajcoluss@caltech.edu

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = 0$$

(SE2)

with the following boundary conditions:

$$U(x,0) = [V_{-},T_{-}]$$
(SE3)

$$U(x,L) = [V_{+},T_{+}]$$
(SE4)

because the high electrical and thermal conductivities of Li⁰ ensure that the surface of cathodic electrodeposits is equipotential and isothermal at $[V_{-}, T_{-}]$ at all times. To ensure a smooth surface, the equipotential surface extends slightly beyond the bonding radius of Li⁰ at (^{1.3 r}₊).

$$U_{dendrite} = U_{cathode}$$
(SE5)

We solved (SE2) using a finite difference method in a (280 x 280) grid defined by equation (SE6) [1]:

$$U_{i,j} = \frac{1}{4} (U_{i+1,j} + U_{i-1,j} + U_{i,j+1} + U_{i,j-1})$$
(SE6)

Periodic boundary conditions (PBC) were assumed in the x direction. i.e., every Li⁺ exiting the domain from right/left boundaries enters from the opposite side. The electric field was obtained numerically as:

$$E_{i,j} = -\frac{\phi_{i+1,j} - \phi_{i-1,j}}{2\Delta x}i - \frac{\phi_{i,j+1} - \phi_{i,j-1}}{2\Delta y}j$$
 (SE7)

We further considered that the overpotential for Li⁺ reduction is so small that Li⁺ should be reduced with unit probability once it reaches the cathode within^{1.3 r} + at the applied potentials.

The temperature distribution can be also obtained from E2. Since the conductivity of the polymethyl-methacrylate separators is significantly lower than the metal collectors ($\alpha_{Li,Cu} \gg \alpha_{PMMA}$), we assume that the heat within the cell flows along the y-coordinate normal to the electrodes. So we have:

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial y^2}$$
(SE8)

Also since the time scale of temperature relaxation is much faster than ion transport, we will assume a quasi-steady state distribution throughout, that is, temperature profiles are time independent, hence:

$$\frac{\partial^2 T}{\partial y^2} = 0 \tag{SE9}$$

The imposed boundary conditions are:

$$\begin{cases} T(0) = T_{-} \\ T(L) = T_{+} \end{cases}$$
(SE10)

Therefore, we obtain a linear temperature distribution between anode and cathode, which is independent of the solvent thermal conductivity:

$$T(y) = \frac{T_{+} - T_{-}}{L} x + T_{-}$$
(SE11)

Figure 1 shows the distributions of normalized temperature, |T|, defined by SE12:

$$|T| = \frac{T - T_{+}}{T_{-} - T_{+}}$$

(SE12)

as a function of normalized height y/L over convex and concave regions of Li⁰ electrodeposits. The concave/convex morphology has been imitated by a sinusoidal function during one period and the higher curvatures have been approximated with higher sin powers.

Figure S1 - Normalized temperature distribution over convex and concave regions as function of normalized cell height (*y/L*) and width (*x/H*). Inset: |T| normal gradients to the electrodes over convex (blue traces) and concave (red traces) regions as function of increasing positive and negative curvatures κ , respectively.

[1] R. J. LeVeque, *Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems* (Siam, 2007).