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1. Synthesis

1.1 General methods

All solvents and reagents were purchased from commercial suppliers (Fisher or Sigma-
Aldrich). Anhydrous THF, DCM and MeCN were obtained by passing solvents through a
column of activated alumina. Diisopropylamine (DIPA) and triethylamine were distilled from
CaH,. All other reagents were used as supplied by commercial agents. Analytical thin layer
chromatography TLC was carried out on Merck silica gel 60 Fjs4aluminium supported plates
and visualized by absorption of UV light. Flash column chromatography was performed with
VWR silica gel 60 applying pressure of Nj. Size exclusion chromatography was carried out
with use of Bio-rad Bio-beads S-X1. HPLC separation was conducted on an Agilent 1100
system equipped with a G1315B diode array detector, a G1311A quaternary pump and a
G1316A fraction collector. Analytical HPLC was performed with C18 5 um, 4.6 x 150 mm
Eclipse XDB-C18 column (Agilent) using 1 mL min™ flow and stepwise gradient at 40 °C.
The chromatographic separations were monitored in the range 190 —900 nm.

HPLC method 1:

Time [min] H,0 (0.1% TFA) [v/v, %] MeCN [v/v, %]
0.00 95 5
9.00 0 100
11.00 0 100

HPLC method 2:

Time [min] H,0 (0.1% TFA) [v/v, %] MeCN [v/v, %]
0.00 50 50
3.00 20 80
5.00 0 100
10.00 0 100
10.01 50 50
12.00 50 50

ESI-MS measurements were performed operating in positive or negative mode on a Waters
LCT Premier (LRMS) or Bruker pTOF (HRMS) from acetonitrile solutions. MALDI-ToF
mass spectrometry was carried out using a Micromass MALDI micro MX spectrometer and
following matrices: dithranol (1,8,9-anthracenetriol), DTCB (trans-2-[3-(4-tert-butylphenyl)-
2-methyl-2-propenylidene]malononitrile), CHCA (a-cyano-4-hydroxycinnamic acid).

NMR spectra were acquired at ambient temperature with Bruker instruments DPX200 (200
MHz), DPX250 (250 MHz), DPX400 (400 MHz), AV400 (400 MHz), DRX500 (500 MHz).
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Chemical shifts for the *H-NMR and *3C spectra are reported with CDCls or DMSO-d; as
reference. Data are displayed as follows: chemical shift 5 (ppm), multiplicity, integration and
coupling constants J (Hz).

1.2 Synthetic procedures

3,3'-(2,7-diiodo-9H-fluorene-9,9-diyl)bis(propan-1-ol) (2)

This compound was prepared using modified reaction conditions reported in the literature.* A
solution of borane-THF complex (1.0 M, 56 mL, 56 mmol) was added slowly to a cooled (0
°C) solution of 3,3'-(2,7-diiodo-9H-fluorene-9,9-diyl)dipropionic acid (7.20 g, 12.8 mmol) in
anhydrous THF (10 mL). After 2 h of stirring at 20 °C the reaction mixture was poured into
ice (500 mL) and precipitated solid was removed by filtration. The precipitate was redissolved
in THF and crystalized by addition of Et,O to give 2 (6.00 g, 11.2 mmol, 87% yield) as a
white powder.

'H NMR (400 MHz, DMSO-dg) & 0.59-0.65 (m, 4H), 1.96-2.00 (m, 4H), 3.10-3.14 (m, 4H),
7.66 (d, J=7.8 Hz, 2H), 7.71 (dd, J=1.3 Hz, J=7.8 Hz, 2H), 7.83 (d, J=1.3 Hz, 2H); *C NMR
(50 MHz, DMSO-dg) . 27.7, 35.7, 55.2, 61.2, 94.4, 122.6, 132.1, 136.3, 139.7, 152.4; m/z
ESI+ 557.0, [M+Na]", C1oH20l20,Na’ requires 556.9 (100%).

BEF-OH
HO OH
S Yo
MeO.(./\o 6 N @ N ’\)_OMe
=/ = &) 6
Meo.(/‘o)gs @ O Z(0’\).60Me

This compound was prepared using modified reaction conditions reported in the literature.?
The following solids were dried under vacuum: Cul (1 mg, 0.005 mmol), Pd(OAc), (1 mg,
0.004 mmol) PPh3 (2 mg, 0.008 mmol) and 3,3'-(2,7-diiodo-9H-fluorene-9,9-diyl)bis(propan-
1-ol) (2) (50 mg, 0.10 mmol). Distilled DIPA (0.5 mL) was added and two freeze-thaw cycles
were carried out. A solution of acetylene 1 (157 mg, 0.21 mmol) in anhydrous MeCN (0.5
mL) was added and additional freeze-thaw cycle was run. The progress of the reaction was
monitored by HPLC (method 1). After 2 h of stirring at 20 °C the reaction mixture was diluted
with DCM (50 mL) and the crude mixture was washed with H,O (20 mL) and saturated
aqueous solution of NH4CI (20 mL). The organic layer was dried over MgSO, and evaporated
to dryness. The final compound was isolated from the mixture with use of reverse phase
column chromatography (in gradient from 100% of H,O (0.1% TFA v/v) to 100% MeCN).
BEF-OH was obtained in 33% yield (55 mg, 0.03 mmol).

'H NMR (400 MHz, CDCl3)s: 0.87-0.94 (m, 4H), 2.09-2.13 (m, 4H), 3.38 (m, 16H), 3.53-
3.55 (m, 8H), 3.60-3.67 (m, 104H), 6.70 (d, J=8.5 Hz, 4H), 7.39 (d, J=8.5 Hz, 4H), 7.47-7.49
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(m, 4H), 7.63 (d, J=8.2 Hz, 2H); m/z MALDI-TOF" 1825.08, [M+Na]", CgsH15:N,O3Na"
requires 1825.04 (100%).

(2,7-diiodo-9H-fluorene-9,9-diyl)bis(propane-3,1-diyl) bis(4-nitrobenzoate) (3)

o O,
o] o

5%

This compound was prepared using reaction conditions reported in the literature.® 3,3'-(2,7-
Diiodo-9H-fluorene-9,9-diyl)bis(propan-1-ol) 2 (178 mg, 0.33 mmol),
p-nitrobenzoic acid (93 mg, 0.55 mmol), EDC (114 mg, 0.59 mmol) and DMAP (8 mg, 0.07
mmol) were dissolved in anhydrous MeCN and THF (1:1 v/v, 6 mL) and stirred overnight at
20 °C. The mixture was diluted with H,O and extracted with CHCI; (50 mL). The organic
extracts were combined, dried over MgSO, and evaporated to dryness. The product was
isolated by column chromatography on silica with PE/CHCI; 4:1 v/v as eluent to give
compound 3 as a white solid (21%, 60 mg, 0.072 mmol).

'H NMR (CDCls, 400 MHz) & 1.04-1.11 (m, 4H), 2.14-2.18 (m, 4H), 4.07-4.10 (m, 4H), 7.49
(d, J=8.5 Hz, 2H), 7.72-7.64 (m, 4H), 8.13 (d, J=8.2 Hz, 4H), 8.30 (d, J=8.2 Hz, 4H); *C
NMR (CDCls, 100 MHz) & 23.1, 36.2, 54.6, 65.4, 93.7, 122.0, 123.6, 130.7, 131.8, 131.5,
136.9, 139.9, 150.5, 150.6, 164.5; m/z EI* 831.9778, [M]*, CasHasl.N20s requires 831.9778
(100%).

BEF-NB

Meo.(./‘O)rs\‘N @ O Nﬂo’\%OMe
= ' =
MeO-(./\0§6 O D Z‘O’\.)%OMe

This compound was prepared using modified reaction conditions reported in the literature.?
The following solids were dried under vacuum: Cul (3.0 mg, 0.016 mmol), Pd(OAc), (4.7
mg, 0.021 mmol), PPhs (11 mg, 0.042 mmol) and (2,7-diiodo-9H-fluorene-9,9-
diylbis(propane-3,1-diyl) bis(4-nitrobenzoate) (3) (88 mg, 0.10 mmol). Distilled DIPA (1
mL) was added and two freeze-thaw cycles were carried out. A solution of acetylene 1 (160
mg, 0.21 mmol) in anhydrous MeCN (2 mL) was added and additional freeze-thaw cycle was
run. The progress of the reaction was monitored by TLC. After 1 h of stirring at 20 °C
additional portion of Cul (3.0 mg, 0.016 mmol), Pd(OAc), (4.7 mg, 0.021 mmol), PPh3 (11
mg, 0.042 mmol) was added. After 18 h of stirring the reaction mixture was diluted with
EtOAc (50 mL) and the crude mixture was washed with H,O (20 mL) and saturated aqueous
solution of NH4CIl (20 mL). The organic layer was dried over MgSO, and evaporated to
dryness. The residue was redissolved in CHCI3; and passed through the silica column eluting
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with CHCI3/MeOH (95:5 v/v). The product was purified with use of size exclusion
chromatography with CHCI; as eluent to yield BEF-NB (33 mg, 0.016 mmol, 15% yield).

'H NMR (CDCls, 400 MHz) & 1.04-1.07 (m, 4H), 2.12-16 (m, 4H), 3.30 (s, 12H), 3.46-3.48
(m, 8H), 3.51-3.62 (m, 104H), 3.97-4.00 (m, 4H), 6.61 (d, J=8.8 Hz, 4H), 7.27 (d, J=8.8 Hz,
4H), 7.42 (s, 2H), 7.45 (d, J=7.8 Hz, 2H), 7.61 (d, J=7.8 Hz, 2H), 8.04 (d, J=8.0 Hz, 4H), 8.13
(d, J=8.0 Hz, 4H); *C NMR (CDCl;, 100 MHz) & 23.2, 36.4, 50.8, 54.2, 59.0, 65.5, 68.4,
70.5-70.7, 72.0, 87.9, 91.6, 109.3, 111.5, 120.2, 123.4, 123.5, 125.3, 130.6, 131.0, 132.8,
133.8, 135.5, 140.0, 147.9. 149.0, 150.5, 164.5; m/z MALDI-TOF" 2123.47, [M+Na]",
C109H158N4036N8.Jr I’EC{UiI’ES 2123.06 (100%)

2,7-diiodo-9H-fluorene-9,9-diyl)bis(propane-3,1-diyl) bis(4-acetylbenzoate) (4)
(o] O,
I @.@ |

This compound was prepared using reaction conditions reported in the literature.® 3,3'-(2,7-
Diiodo-9H-fluorene-9,9-diyl)bis(propan-1-ol) (2) (300 mg, 0.56 mmol), 4-acetoxybenzoic
acid (200 mg, 1.22 mmol), EDC (234 mg, 1.23 mmol) and DMAP (25 mg, 0.20 mmol) were
dissolved in anhydrous DCM (5 mL) and stirred for 2 h at 20 °C. The mixture was diluted
with H,O and extracted with DCM (50 mL). The organic extracts were combined and dried
over MgSO, and evaporated to dryness. The residue was dissolved in CHCI3; and passed
through a silica plug with CHCI3 as eluent. Product containing fractions were combined and
evaporated in vacuo. The product was purified further by redissolving in MeOH and
precipitating with Et,O/hexane (1:1 v/v ) to yield 4 as a white solid (54%, 250 mg, 0.3 mmol).

IH NMR (CDCls, 400 MHz) & 1.04-1.16 (m, 4H), 2.13-2.17 (m, 4H), 2.65 (s, 6H), 4.07 (t,
J=6.2 Hz, 4H), 7.47 (d, J=8.4 Hz, 2H), 7.72-7.73 (m, 4H), 8.02 (d, J=8.7 Hz, 4H), 8.06 (d,
J=8.7 Hz, 4H); 3¢ NMR (CDCl3, 1200 MHz) ¢&: 22.1, 25.9, 30.6, 35.3, 53.6, 63.9, 92.5,
120.9, 127.3, 128.8, 130.8, 132.9, 135.9, 138.9, 139.2, 149.7, 164.5, 196.5; m/z EI" 826.0248,
[M], C37H32|206+ requires 826.0289 (100%)

BEF-Phen
ro< 0
Meo.(./‘oxe\‘N @ O Nﬂo‘\)_eom
=/ ) =
MeO4{/™ °§6 O @ Z(O’\.)%OMe

This compound was prepared using reaction conditions reported in the literature.”> The
following solids were dried under vacuum: Cul (0.9 mg, 0.005 mmol), Pd(OAc), (1.1 mg,
0.005 mmol) PPh3 (2.6 mg, 0.01 mmol) and 2,7-diiodo-9H-fluorene-9,9-diyl)bis(propane-3,1-
diyl) bis(4-acetylbenzoate) (4) (74 mg, 0.09 mmol). Distilled DIPA (1 mL) was added and

S5



two freeze-thaw cycles were carried out. A solution of acetylene 1 (150 mg, 0.20 mmol) in
anhydrous MeCN (2 mL) was added and additional freeze-thaw cycle was run. The progress
of the reaction was monitored by TLC. After 1 h of stirring at 20 °C, additional portion of Cul
(0.9 mg, 0.005 mmol), Pd(OAc), (1.1 mg, 0.005 mmol) PPhs (2.6 mg, 0.01 mmol) and
acetylene 1 (50 mg, 0.07 mmol) in anhydrous MeCN (1 mL) were added. Once the reaction
was completed the mixture was diluted with DCM (50 mL) followed by washing with H,O
(20 mL) and saturated aqueous solution of NH4CI (20 mL). The organic layer was dried over
MgSQ, and evaporated to dryness. The residue was redissolved in CHCI3 and passed through
the silica column eluting with CHCIl3/MeOH (95:5 v/v). The product was purified with use of
size exclusion chromatography with CHCI; as eluent to yield BEF-Phen (31 mg, 0.015
mmol, 16 %).

'H NMR (CDCls, 500 MHz) & 1.09-1.15 (m, 4H), 2.21-2.24 (m, 4H), 2.44 (s, 6H), 3.38 (s,
12H), 3.54-3.56 (m, 8H), 3.58-3.69 (m, 104H), 4.05-4.07 (m, 4H), 6.68 (d, J=8.9 Hz, 4H),
7.37 (d, J=8.9 Hz, 4H), 7.54 (m, 4H), 7.69 (d, J=8.1 Hz, 2H), 7.94 (d, J=8.5 Hz, 4H), 8.04 (d,
J=8.5 Hz, 4H); **C NMR (CDCls, 125 MHz) & 22.2, 25.7, 35.4, 49.8, 53.3, 58.0, 64.1, 67.3,
69.6-69.7, 70.9, 87.1, 90.4, 108.6, 110.5, 119.2, 122.3, 124.4, 127.2, 128.8, 130.0 132.0,
133.0, 139.2, 146.8 148.2, 164.6, 196.5; m/iz MALDI-TOF* 2093.23, [M], C113H164N4Oss"
requires 2094.12 (100%).

2,7-diiodo-9H-fluorene-9,9-diyl)bis(propane-3,1-diyldimethanesulfonate (5)

This compound was prepared using reaction conditions reported in the literature.* To a cooled
(0 °C) solution of compound (2) (1.00 g, 1.87 mmol) in anhydrous DCM (10 mL), EtsN (1.6
mL, 11.48 mmol) and methanesulfonyl chloride (580 pL, 7.50 mmol) were added dropwise.
After 1 h of stirring at 20 °C the mixture was diluted with H,O and extracted with CHClI; (50
mL). The organic extracts were combined, dried over MgSO, and evaporated to dryness. The
product was isolated with use of column chromatography on silica with CHCI3 as eluent to
give 5 as a white solid (900 mg, 1.3 mmol, 70% vyield).

'H NMR (CDCls, 400 MHz) &: 0.94-1.00 (m, 4H), 2.04-2.09 (m, 4H), 2.89 (s, 6H), 3.89-3.93
(m, 4H), 7.42 (d, J=8.5 Hz, 2H), 7.64-7.67 (m, 4H); *C NMR (CDCl;, 100 MHz) & 23.6,
35.5, 37.4, 54.3, 69.8, 93.8, 122.0, 131.9, 137.0, 139.7, 150.2.

1,1'-((2,7-diiodo-9H-fluorene-9,9-diyl)bis(propane-3,1-diyl))bis(pyridin-1-ium)
methanesulfonate (6)

S6



This compound was prepared using reaction conditions reported in the literature.® 2,7-Diiodo-
9H-fluorene-9,9-diyl)bis(propane-3,1-diyl dimethanesulfonate (5) (200 mg, 0.28 mmol) was
dissolved in anhydrous pyridine (5 mL) and heated for 15 h at 115 °C. The reaction was
allowed to cool to 20 °C and solvent was evaporated to dryness. The residue was dissolved in
MeCN and precipitated with THF. Solvent was decanted and precipitation procedure was
repeated several times, to yield the product 6 as a fine red powder (120 mg, 0.14 mmol, 50%).

'H NMR (DMSO-dgs, 400 MHz) & 1.02-1.10 (m, 4H), 1.96-2.02 (m, 4H), 2.32 (s, 6H), 4.35-
4.39 (m, 4H), 7.65-7.67 (m, 4H), 7.71 (d, J=8.0 Hz, 2H), 8.07-8.10 (m, 4H), 8.56-8.60 (m,
2H), 8.89 (d, J=6.0 Hz, 4H); *C NMR (DMSO-ds, 100 MHz) &: 26.4, 35.1, 40.7, 54.9, 61.2,
95.4, 123.3, 128.9, 132.5, 137.4, 140.1, 145.5, 146.4, 151.0; m/z ESI-MS+ 329.1, [M]*
CaoHasloNL?* requires 329.0 (100%).

BEF-Pyr

MeO. OX;‘N //\(0’\+0Me
v )F @ = @.@ = et 6
MeO.(./\o 6 0’\.)-0Me

This compound was prepared using reaction conditions reported in the literature.> The
following solids were dried under vacuum: Cul (1.3 mg, 0.007 mmol), Pd(OAc), (1.5 mg,
0.007 mmol), PPhs (4 mg, 0.015 mmol) and 1,1'-((2,7-diiodo-9H-fluorene-9,9-
diyl)bis(propane-3,1-diyl))bis(pyridin-1-ium) methanesulfonate (6) (60 mg, 0.071 mmol).
Distilled DIPA (2 mL) was added and two freeze-thaw cycles were carried out. A solution of
acetylene 1 (120 mg, 0.160 mmol) in anhydrous MeCN (3 mL) was added and additional
freeze-thaw cycle was run. The progress of the reaction was monitored by HPLC (method 1).
After 2 h of stirring at 20 °C the reaction mixture was diluted with CHCI; (50 mL) and the
crude mixture was washed with H,O (20 mL) and saturated aqueous solution of NH4CI (20
mL). The organic layer was dried over MgSO, and evaporated to dryness. The final
compound was isolated from the crude mixture with use of reverse phase column
chromatography (in gradient from 100% of H,O (0.1% TFA v/v) to 100% MeCN). Product
containing fractions were extracted with CHClI3, organic washings were combined, dried over
MgSO, and evaporated to dryness. Further purification required use of size exclusion
chromatography with CHCI; as eluent to give BEF-Pyr (22 mg, 0.01 mmol, 14 %). The
methanesulfonate counterion was replaced by the TFA anion during column chromatography
with TFA-buffer.
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'H NMR (CDCls, 500 MHz) & 1.35-1.47 (m, 4H), 1.98-2.12 (m, 4H), 3.34 (s, 12H), 3.49-
3.53 (m, 8H), 3.55-3.69 (m, 104H), 4.46-4.61 (m, 4H), 6.65 (d, J=8.5 Hz, 4H), 7.16 (s, 2H),
7.35 (d, J=8.5 Hz, 4H), 7.42 (d, J=7.8 Hz, 2H), 7.59 (d, J=7.8 Hz, 2H), 7.92-8.04 (m, 4H),
8.31-8.39 (m, 2H), 8.97-9.14 (m, 4H); **C NMR (CDCls, 125 MHz) & 26.7, 35.0, 51.2, 53.9,
59.4, 62.1, 68.8, 70.9-71.0, 71.1, 72.3, 88.5, 92.6, 109.8, 120.0, 120.8, 123.9, 125.7, 128.8,
131.6, 133.4, 139.9, 145.4, 145.5, 148.3, 148.8; *°F NMR (CDCls, 376 MHz) & -75.4; m/z
MALDI-TOF" 1926.49, [M]", C105H160N4O2s requires 1926.13 (100%).

2. NMR and MS spectra, HPLC chromatograms

In this section we present *H and **C NMR spectra of all synthesized compounds. 2D NMR
experiments aided assignment of 'H NMR peaks to the corresponding protons in each
molecule, however as splitting patterns and chemical shifts are very similar within each series
(intermediate fluorene cores 2-6 and BEF derivatives) therefore we present 2D NMR spectra
only for two representative compounds from each series, namely compound 4 and BEF-NB.
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Figure S1. *H NMR spectrum of compound 2 with zoom on the aromatic region (400 MHz, DMSO-ds, 298 K).
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Figure S5. HPLC chromatogram of BEF-OH, absorption recorded at 375 nm, HPLC method 1.
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Figure S9. *H NMR spectrum of BEF-NB with zoom on the aromatic region (400 MHz, CDCls, 298 K).
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Figure S10. **C NMR spectrum of compound BEF-NB (200 MHz, CDCls, 298 K).
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Figure S11. Part of the *H-'H COSY spectrum showing coupling between the fluorene core protons (a, b), p-nitrobenzoate protons (g, h) and
aniline unit protons (i, j) in BEF-NB (400 MHz, CDCl3, 298 K).
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Figure S12. Part of the *H-*C HSQC spectrum showing one bond H-C correlations between sp? carbons atoms and fluorene core aromatic
protons (a, b, ¢), p-nitrobenzoate protons (g, h) and aniline unit protons (i, j) in BEF-NB (400 MHz, CDCl3, 298 K).
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Figure S13. Part of the *H-*C HMBC spectrum showing coupling over three bonds between sp® carbon atom ¢ (previously assigned with HSQC
spectrum) and fluorene core aromatic proton b and coupling over three bonds between aliphatic proton d and aromatic proton a with sp carbon
atom 1 in BEF-NB (400 MHz, CDCl3, 298 K).
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Figure S14. MALDI-TOF isotope patterning of [BEF-NB+Na]" (bottom) and theoretical pattern calculated for C1g9H158N4O3sNa (top).
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Figure S15. HPLC chromatogram of BEF-NB, absorption recorded at 375 nm, HPLC method 2.
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Figure S16. *H NMR spectrum of compound 4 with zoom on the aromatic region (400 MHz, CDCls, 298 K).
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Figure S17. **C NMR spectrum of compound 4 (200 MHz, CDCl5, 298 K).
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Figure S18. Part of the *H-'H COSY spectrum showing coupling between the fluorene core protons (a, b), phenacyl protons (g, h) and aliphatic
protons (d, e, f) in compound 4 (400 MHz, CDClj3, 298 K).
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Figure S19. Part of the *H-*C HSQC spectrum showing one bond H-C correlations between sp? carbons atoms and the fluorene core aromatic
protons (a, b, ¢) and phenacyl protons (g, h) in compound 4 (400 MHz, CDCls;, 298 K).
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Figure S20. Part of the *H-*C HMBC spectrum showing coupling over three bonds between sp carbon atom 2 and fluorene core aromatic proton
a and coupling over three bonds between aliphatic proton d and aromatic proton a with sp carbon atom 1 in compound 4 (400 MHz, CDCls3, 298
K).
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Figure S21. EI+ mass spectrum of compound 4 (bottom) and theoretical isotopic pattern calculated for C37H321,06 is 826.02
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Figure S$22. *H NMR spectrum of BEF-Phen with zoom on the aromatic region (500 MHz, CDCls, 298 K).
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Figure S24. MALDI-TOF isotope patterning of [BEF-NB] and [BEF-NB+Na]"(bottom) and theoretical pattern calculated for C113H164N4O34
(middle) and C;13H164N4O34Na (top).
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Figure S25. HPLC chromatogram of BEF-Phen, absorption recorded at 375 nm, HPLC method 2.
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Figure $26. *H NMR spectrum of compound 5 with zoom on the aromatic region (400 MHz, CDCls, 298 K).
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Figure S27. **C NMR spectrum of compound 5 (200 MHz, CDCls, 298 K).

S35



——3g.88¢
——8.585
T~—8.56¢€
—7.701
—,688

__—8.604
~1.723
T~~7.655

Q@ —8.903

h a+b+c i

o
4.000
N
[eo] _/_
¢ —12.182
o | Tl
o
3.946
S
e
2.1
——
3.945

9.0 8.8 8.4 8.2 8.0 7.8 7.6 7.4 ppm
VY A\ \ |\ ||
a+b+c -OMs
f
d e
T I T T T - T T - r Ml T
9 8 7 6 5 4 3 2 i} 0 ppm

Figure S$28. *H NMR spectrum of compound 6 with zoom on the aromatic region (400 MHz, DMSO-ds, 298 K).
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Figure $29. *C NMR spectrum of compound 6 (200 MHz, DMSO-dg, 298 K).
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Figure S31. *H NMR spectrum of BEF-Pyr with zoom on the aromatic region (500 MHz, CDCls, 298 K).
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Figure S32. **C NMR spectrum of BEF-Pyr (250 MHz, CDCls, 298 K).

S40



09-Jun-2014 17:20:23

HegPyr_1 DTCB runt 9_06_2014 MALDI
HegPyr_1 DTCB run1 9_06_2014 (0.031) Is (1.00,1.00) C105H160N4028 TOF LD+
1926.13 343e12
100+
Theoretical [M] &
192512
192713
s
1928.13
1929.13
1930.14
0 T T T T T T T T T T T T T T T T T T
HegPyr_1DTCB run1 9_06_2014 5 (0.164) Sm (SG, 5x5.00); Sb (5,20.00 ); Cm (2:10) TOF LD+
1926.49 861
100+
1925.46
1927 .46
n
1928.46
1935.29
1934.35
1936.23

fotesd 192240 192343 192440

1929.49

1930.43
193119

T T T T T T T T T T
1926 1927 1928 1929 1830 1931 1932 1933 1934 1935

T
1936

1 9‘37

1 9‘23 ‘19’24

‘19’25

S41

Figure S33. MALDI-TOF isotope patterning of [BEF-Pyr]*(bottom) and theoretical pattern calculated for C105H160N4O2s (top)
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Figure S34. HPLC chromatogram of BEF-Pyr, absorption recorded at 375 nm, HPLC method 1.
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3. Spectroscopy and photophysics
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Figure S35. Arbitrary scaled absorption spectra of the dyads and models in toluene (TOL) solutions. Pyr is
not soluble in TOL.
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Figure S36. Corrected excitation spectra of the fluorene model and dyads in toluene (TOL) overlaying the

corresponding absorption spectra.
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Figure S37. Luminescence spectra of the fluorene model and dyads in TOL and MeOH glasses at 77 K,

excitation is at 370 nm.
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Figure S38. a) Arbitrarily scaled corrected excitation spectra measured on the maxima of the
phosphorescence of the dyads in TOL at 77 K, (1 ms delay, 4 ms gate), see Figure 5 main text. b)
Acrbitrarily scaled delayed luminescence (1 ms delay, 4 ms gate) spectra of Phen in TOL and MeOH
glasses at 77 K. Excitation is at 300 nm in TOL and 270 nm in MeOH.
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Figure S39. Transient absorption spectra of dyads in MeOH at various delays, after laser excitation (355
nm, 35 ps FWMH, 3 mJ/pulse) and time profiles with fittings at 510 nm for BEF-Pyr and BEF-NB, and

540 nm for BEF-Phen.
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Figure S40. Transient absorption spectra of Phen in MeOH solutions at various delays after laser
excitation (18 ns pulse, 266 nm, 3 mJ/pulse).
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4. Electrochemistry
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Figure S341. Determination of electrochemical properties of the model electron donor BEF-OH.Top left — square wave with ferrocene as internal standard,;

bottom left — cyclic voltammetry with ferrocene as internal standard; bottom right — cyclic voltammetry without standard.The results show that the first
oxidation potential of BEF-OH is 0.36 V vs Fc/Fc¢* (in THF, with 0.1 M Bu,PF6).
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Figure S42. Determination of electrochemical properties ofthe model dyad BEF-Pyr. Left — cyclic voltammetry with ferrocene as internal standard; right —
cyclic voltammetry without standard. Due to the insufficient amount of BEF-Pyr, square wave analysis peaks were ill-defined and did not allow for the
accurate determination of red-ox values. In this case oxidation potentialwas determined by measuring the distance between the half-wave potential of
ferrocene and the oxidation peak of the analyzed compound. The same method was used to determine reduction potential. The results show that the first
oxidation potential of BEF-Pyr is 0.38 V vs Fc/Fc* and the first reduction potential is -1.78 V vs Fc/Fc* (in THF, with 0.1 M Bu,PF).

S48



! Pyr +Fc, THF
5. ,
6.0x10 [Fe]*/[Fc]
(0.23V)
[Pyrl/[Pyr]”
4.0x10° 4 cres)
<
IS
o
5
O 2.0x10° 1
0.0 h - “
3 -2 -1 0
E/V
Pyr +Fc, THF Pyr. THF
oo 4.0x10° 4
0x10 [Fel/[Fe]*
(0.27 V)
5.0x107° 1 0.0+
< 0.0 < 5
= = -4.0x107 1
= 5
P .5- :
5 -5.0x10 = 5
3 O -8.0x10°-
-1.0x10" [Fe] /[Fc] ’
} [Pyr]/[Pyr]
[inrl/l[l\?/r] 0.12V) -1.2x10* 1 (-1.68 V)
-1.5x10™ 1 -
-3 2 -1 0 1 2 -3 2 -1 0 1 2
E/V E/V

Figure S43. Determination of electrochemical properties of the model electron acceptor Pyr.Top left — square wave-reductionwith ferrocene as standard;

bottom left — cyclic voltammetry with ferrocene as internal standard; bottom right — cyclic voltammetry without standard. The results show that the first
reduction potential of Pyr is -1.76 V vs Fc/Fc* (in THF, with 0.1 M Bu,PF).
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Figure S44. Determination of electrochemical properties of the model dyad HegPhenBEF-Phen. Top left — square wave-reduction with ferrocene as internal
standard; top right — square wave oxidation with ferrocene as internal standard; bottom left — cyclic voltammetry with ferrocene as internal standard; bottom

right — cyclic voltammetry without standard. The results show that the first oxidation potential of HegPhen BEF-Phen is 0.36 \V vs Fc/Fc¢* and the first
reduction potential is -2.20 V vs Fc/Fc* (in THF, with 0.1 M Bu,PFy).
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Figure S45. Determination of electrochemical properties of the model electron acceptor Phen. Top left — square wave-reduction with ferrocene as internal
standard; bottom left — cyclic voltammetry with ferrocene as internal standard; bottom right — cyclic voltammetry without standard. The results show the first

reduction potential of Phen is -2.18 V vs Fc/Fc¢* (in THF, with 0.1 M Bu,PFe).
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Figure S46. Determination of electrochemical properties of the model dyad BEF-NB. Top left — square wave-reduction with ferrocene as internal standard;
top right — square wave oxidation with ferrocene as internal standard; bottom left — cyclic voltammetry with ferrocene as internal standard; bottom right —

cyclic voltammetry without standard. The results show that the first oxidation potential of BEF-NB is 0.37 V vs Fc/Fc¢” and the first reduction potential is -
1.51 V vs Fc/Fc* (in THF, with 0.1 M Bu,PFe).
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Figure S47. Determination of electrochemical properties of the model electron acceptor NB. Top left — square wave-reduction with ferrocene as internal

standard; bottom left — cyclic voltammetry with ferrocene as internal standard; bottom right — cyclic voltammetry without standard. The results show that the
first reduction potential of NB is -1.47 V vs Fc/Fc¢* (in THF, with 0.1 M Bu,PFs).
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