Electronic Supplementary Information

Ag Plasmonic Nanostructures and a Novel Gel Electrolyte in a High Efficiency TiO₂/CdS Solar Cell

P. Naresh Kumar,^a Melepurath Deepa,^{a,*} Avanish Kumar Srivastava^b

^aDepartment of Chemistry, Indian Institute of Technology Hyderabad, Ordnance Factory Estate,

Yeddumailaram-502205, Telangana (India).

^bCSIR-National Physical Laboratory, Dr. K.S. Krishnan road, New Delhi-110012 (India).

*Email: mdeepa@iith.ac.in

Figure S1 J-V characteristics of photoelectrochemical solar cells (under 1 sun illumination (AM 1.5G)) with the following photoanodes: Ag/TiO₂/CdS (\bigcirc) (with Ag product obtained after 20 min. reflux time) and Ag/TiO₂/CdS (\bigcirc) (with Ag product obtained after 60 min. reflux time). The electrolyte was a 0.1 M Na₂S solution in 3:7 (v/v) water:MeOH and a MWCNT/FTO assembly was used as the counter electrode.

Table S1 Solar cell parameters of cells using 0.1 M Na₂S electrolyte, exposed cell area: 0.10 to 0.15 cm², under 1 sun illumination (AM1.5G, 100 mW cm⁻²) with the listed photoanodes; all cells with MWCNT/FTO as the counter electrode.

Photoanode configuration	V _{OC} (mV)	J _{SC} (mA cm ⁻²)	FF	η (%)
Ag (nanoparticles)/TiO ₂ /CdS-Liquid	814	10.79	41.94	3.68
Ag (nanorods)/TiO ₂ /CdS-Liquid	800	11.35	40.80	3.70

Figure S2 Low and high magnification images of (a and b) TiO₂, (c and d) Ag/TiO₂, and (e and f) Ag/TiO₂/CdS electrodes.

Figure S3 Cyclic voltammograms of (a) a 0.1 M Na₂S solution in 3:7 (v/v) water:MeOH and (b) a 0.1 M Na₂S gel with 4.1 wt.% of SiO₂ in 3:7 (v/v) water:MeOH, recorded at a scan rate of 10 mV s⁻¹, with two Pt electrodes as working and counter electrodes and a Ag/AgCl/KCl as the reference electrode.

The CV plots of the liquid and gel electrolytes show that the reduction potential peaks are observed at -0.71 V for the liquid electrolyte and -0.75 V for the gel electrolyte. These potentials were observed with respect to an Ag/Ag⁺ reference electrode, which has a fixed electrode potential of

+0.197 V. Therefore, the reduction potentials of the liquid electrolyte and the gel electrolyte are -0.513 V and -0.553 V *versus* NHE. The S/S²⁻ has a standard redox potential of -0.48 V,¹ which is close to the values observed herein for the liquid and the gel electrolyte. These values are equal to ~ -4.0 eV (E (eV) = -4.5-(-0.513)) for the liquid electrolyte and ~ -3.95 eV (E (eV) = -4.5-(-0.553)) for the gel electrolyte. These values match well with redox potential of sulfide ions in literature.¹

Table S2 Solar cell parameters of cells by considering standard deviation using 0.1 M Na₂S electrolyte, exposed cell area: 0.10 to 0.15 cm², under 1 sun illumination (AM1.5G, 100 mW cm⁻²) with the listed photoanodes; all cells with MWCNT/FTO as the counter electrode.

Photoanode configuration	V _{OC} (mV)	J _{SC} (mA cm ⁻²)	FF	η (%)
TiO ₂ /CdS-Liquid TiO ₂ /CdS-Gel	875.25 ± 2.75 921.4 ± 37.4	8.2 ± 0.88 8.02 ± 0.57	40.45 ± 3.74 38.9735 ± 3.9365	$\begin{array}{c} 2.87 \pm 0.03 \\ 2.8525 \pm 0.0275 \end{array}$
Ag/TiO ₂ /CdS-Liquid Ag/TiO ₂ /CdS-Gel	$\begin{array}{c} 1020.5 \pm 0.5 \\ 920.55 \pm 0.35 \end{array}$	$\begin{array}{c} 11.465 \pm 0.205 \\ 9.8575 \pm 0.5725 \end{array}$	$\begin{array}{c} 35.98 \pm 0.14 \\ 38.235 \pm 0.235 \end{array}$	4.21 ± 0.06 3.47 ± 0.18

Figure S4 J-V characteristics for (a) TiO_2/CdS , and (b) Ag/TiO₂/CdS based solar cells, before (\bigcirc) and after (\bigcirc) exposure to discontinuous 1 sun illumination for 3 h.

Table S3 Solar cell parameters of cells with 0.1 M Na_2S electrolyte, exposed cell area: 0.10 to 0.15 cm², with the listed photoanodes; both cells with MWCNT/FTO as the counter electrode.

Photoanode configuration	V _{OC} (mV)	J _{SC} (mA cm ⁻²)	FF	η (%)
TiO_2/CdS (after 1 sun discontinuous illumination for 3 h)	850	7.43	35.32	3.62
Ag/TiO ₂ /CdS (after 1 sun discontinuous illumination for 3 h)	991	11.45	41.55	4.008

Figure S5 (a) SEM image of a MWCNT counter electrode and (b) the corresponding TEM image.

The EQE data of bare TiO_2 is shown below. The maximum value is about 4% in the UV region. It matches with a value of about 4% (observed in the UV range) reported earlier for a TiO_2 film prepared by a sol-gel route.²

Figure S6 EQE spectrum of a cell with TiO_2 as the photoanode, a 0.1 M Na₂S solution as the electrolyte and a MWCNT/FTO as the counter electrode.

Reference

1. M. Bouroushian, Chapter 2, Electrochemistry of the Chalcogens, Electrochemistry of Metal Chalcogenides, Monographs in Electrochemistry, Springer-Verlag Berlin Heidelberg 2010.

2. J. Hensel, G. Wang, Y. Li and J. Z. Zhang, Nano Lett. 2010, 10, 478-483.