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I. ADDITIONAL RESULTS

A. Analysis of 1M TEMPOL solutions

The TEMPOL-TEMPOL radial distribution functions
(RDFs) calculated from the 1M TEMPOL simulations
are shown in Fig. S1. While the TEMPOL molecules are
seen to be well dispersed in acetone and DMSO*, a very
small tendency of the radicals to stay closer to each other
is seen in the simulation with DMSO.
The near-near (NN) and near-far (NF) contributions

to the TEMPOL-solvent dipolar time correlation func-
tions (TCFs) from the 1M TEMPOL simulations are
shown in Fig. S2. The corresponding spectral density
functions (SDFs) obtained by Fourier transforming the
TCFs are shown in Fig. S3, where the solid lines are
analytical fits with the finite-size version1,2 of the hard-
spheres centered-spins (HSCS) model.3,4
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FIG. S1. RDFs between the centers of mass of the TEMPOL
molecules in the 1M simulations at 35◦C.

The total dipolar SDF and its spatial decomposition
are plotted against frequency in Fig. S4.

B. T1 measurements

Nuclear T1 values measured for various TEMPOL con-
centrations, C, are given in Table S1. From these num-
bers, the relaxivities are calculated as
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FIG. S2. (a) Near-near and (b) near-far dipolar time correla-
tion functions from the simulations with 1M TEMPOL. Line
colors and inset as Fig. 8 of main text.

and reported in Fig. 11 of the main text. In equation (2)
of the main text we used the notation T 0

1 = T1(0) and
T rad
1 = T1(C).

II. METHODS

A. MD simulations

The simulation parameters for acetone and DMSO
were from the CHARMM General Force Field
(CGenFF),6 which uses the literature model of DMSO.7

The atomic partial charges of the modified DMSO
model, which we called DMSO*, were taken from Ref. 8.
The TEMPOL parameters are from Ref. 9.
All MD simulations were performed with NAMD,10 ac-

counting for electrostatic interactions with the particle-
mesh Ewald method.11 In all simulations the temperature
was kept at 35◦C with a Langevin thermostat. Cubic
boxes with periodic boundary conditions were used. An
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FIG. S3. (a) Near-near and (b) near-far dipolar spectral den-
sity functions from the simulations with 1M TEMPOL. Line
colors and inset as Fig. 9 of main text.
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FIG. S4. Dipolar SDF and its additive contributions from the
simulations with 1M TEMPOL in acetone (a) and DMSO (b).
Symbols indicate SDF values at proton (◦) and electron (△)
Larmor frequencies at 0.33 T (blue) and 9.2 T (red). The
inset of (b) compares the SDFs of DMSO and DMSO*.

integration time step of 2 fs was employed in conjunction
with SETTLE.12

First, cubic boxes containing 2744 solvent molecules
were created. For each solvent, the size of the simulation
box, L, was selected to match the experimental densities
of acetone and DMSO at 35◦C (Table S2). By care-

TABLE S1. Nuclear T1 (in seconds) at 9.2 T for a range of
TEMPOL concentrations. These values were used to calculate
the relaxivities in Fig. 11 of the main text. The reported
temperatures of the samples were deduced as described in
Ref. 5.

TEMPOL
acetone DMSO

29.1◦C 31.9◦C 41.9◦C 21.9◦C 39.0◦C
0 mM 2.751 2.818 3.091 2.539 3.446
5 mM 2.039 - - 0.783 1.093

20 mM 1.046 - - 0.257 0.379
40 mM 0.401 - - 0.134 0.192
60 mM - 0.427 0.484 0.100 0.141

100 mM 0.193 0.209 0.236 0.056 0.079
150 mM - 0.168 0.188 0.038 0.054
200 mM 0.1072 - - 0.027 0.040
500 mM - 0.058 0.065 0.014 0.020

1000 mM - 0.014 0.015 0.007 0.010

TABLE S2. Information about the MD simulations of pure
solvents or liquids containing 1 TEMPOL.

ρ/kgm−3 L/nm Tpure/ns Tlow/ns
acetone 778 6.9811 1+6 1+10
DMSO/DMSO* 1085 6.8964 1+6 1+20

fully choosing the friction coefficients of the Langevin
thermostat that maintains the temperature of the MD
simulations, we ensured that the diffusion constants of
the simulated solutions match the experimental values at
35◦C.13,14 To this end, several constant volume (NVT)
simulations were performed for 7 ns with different val-
ues of the friction coefficient, γ. The first 1 ns was not
analyzed. Diffusion coefficients were estimated from the
slope of the mean square displacement in the time in-
terval 400–500 ps. Displacements in the three Cartesian
directions were analyzed separately and used to calcu-
late an average and standard deviation. The values of
γ for which the average diffusion coefficient was within
one standard deviation of the experimental target was
selected for the subsequent simulations. These are re-
ported in Table 1 of the main text. The small numerical
values of the employed friction (Table 1, main text) in-
dicate that the thermostat does not introduce artificial
fast (∼ ps) dynamics.
For simulations with TEMPOL at infinite dilution,

1 TEMPOL molecule was placed into the pure solvent
boxes. Four acetone and three DMSO molecules that
overlapped with the TEMPOL were removed from the
boxes. Constant volume simulations were performed for
11 ns for acetone and 21 ns for DMSO. The first 1 ns was
not analyzed (last column of Table S2). Atomic coordi-
nates were saved every 0.2 ps, which is several times less
than the electron Larmor frequency at 260 GHz.
For the simulations with high (1M) TEMPOL con-

centration, 176 TEMPOL molecules were placed into
the pure acetone box and 177 TEMPOL molecules were
placed into the pure DMSO box. After removing the
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TABLE S3. Information about the MD simulations with 1M
TEMPOL.

# TEMPOL+solvent L/nm ρ/kgm−3 Thigh/ns
acetone 176+2048 6.6737 801 5
DMSO 177+2040 6.6689 1063 10
DMSO* 177+2040 6.7127 1042 10

overlapping solvent molecules, 2048 acetone and 2040
DMSO molecules remained (Table S3). Since experimen-
tal density information about the 1M TEMPOL solu-
tions was not available, constant pressure (NPT) simu-
lations were performed for 10 ns to estimate the volume.
The average volume of the simulation box over this pe-
riod was calculated. The box sizes were then fixed by
keeping the side lengths at the values given in the third
column of Table S3, which imply the densities reported
in the fourth column of the same table. After that, con-
stant volume (NVT) simulations were performed for a
duration of Thigh ns.

B. Densities

In order to validate the densities obtained by the com-
putational procedure outlined at the end of the previ-
ous paragraph we conducted additional experiments and
measured the densities of pure DMSO and of 1M TEM-
POL in DMSO. The density of pure DMSO at 20◦C was
found to be 1116.64 kg/m3. Given that the literature
value is 1100.53 kg/m3,15 our density measurements are
seen to be reliable to within 1.5%.
The density of 1M TEMPOL in DMSO that we mea-

sured at 20◦C was 1103.18 kg/m3, which is about 1%
lower than our measurement for pure DMSO. Assuming
that this relation applies also at 35◦C, where we have not
performed density measurements, in the MD simulations
at this temperature we should observe similar densities
for pure DMSO and 1M TEMPOL in DMSO.
To check this, we simulated pure DMSO (and DMSO*)

at 35◦C under constant pressure and calculated the av-
erage volume. The densities deduced from these simula-
tions are 1078.5 kg/m3 for DMSO and 1049.9 kg/m3 for
DMSO*. In line with our expectation, both of these val-
ues are slightly larger than the densities of the simulated
DMSO-TEMPOL solutions reported in Table S3. Thus,
the computationally deduced densities of 1M TEMPOL
in DMSO and in DMSO* are reasonable.
Coming back to the simulations of pure DMSO with

the two alternative models, DMSO and DMSO*, we note
that the MD densities (1078.5 kg/m3 for DMSO and
1049.9 kg/m3 for DMSO*) differ from the experimen-
tal value at 35◦C (1085.24 kg/m3)16 by less than 1% and
slightly more than 3%, respectively. Clearly, while the
modified model DMSO* improves the dielectric relax-
ation properties of the solvent, it has an adverse effect on
the liquid density. This observation is a nice illustration

of our claim that the proper development of force-field
parameters requires a separate full-blown effort.

C. Dielectric response

The frequency response of the dielectric permittivity
is related to the collective electric dipole moment of the
entire simulation box with N molecules, expressed as

M(t) =
N
∑

a=1

µa, (S2)

where the vector µa is the electric dipole moment of
molecule a. Let us denote the time correlation functions
(TCFs) of the Cartesian components of M(t) as

Φij(t) = 〈Mi(τ)Mj(τ + t)〉τ , (S3)

where the angle brackets denote ensemble average and
the subscript denotes an additional average over the time
variable τ . For a rotationally isotropic system we should
have Φij(t) = δijΦ(t), where δij is Kornecker’s delta.
Thus, Φ(t) can be estimated by averaging Φxx(t), Φyy(t)
and Φzz(t). The standard deviation of the three inde-
pendent estimates can also be obtained.
The frequency-dependent dielectric constant ǫ(ω) is re-

lated to the TCF Φ(t) through the relation17,18

ǫ(ω) = 1 +
1

V kBT ǫ0
L[−Φ̇(t)](ω), (S4)

where V is the volume of the simulation box, kBT is the
thermal energy at temperature T , ǫ0 = 8.85×10−12 F/m

is the permittivity of vacuum, Φ̇ = dΦ/dt, and L[g] is the
Fourier-Laplace (or one-sided Fourier) transform of g,

L[g(t)](ω) =

∫

∞

0

g(t)e−iωtdt. (S5)

We first fit the TCF Φ(t) obtained from the simulations
with a sum of two or three exponential decays,

Φ(t) =
∑

i

aie
−t/τi , (S6)

over the range 0–1 ns. The amplitudes, ai (Debye
squared), and relaxation time scales, τi (ps), are given
in Table S4 (acetone), Table S5 (DMSO) and Table S6
(DMSO*) for the simulations of pure solvent, dilute (1
TEMPOL) and concentrated (1M TEMPOL) solutions.
From the tables, the dominating timescales are seen to
be ∼ 3 ps for acetone, 20–25 ps for DMSO, and 15–20 ps
for DMSO*. The values vary with the concentration of
TEMPOL.
Using the multiexponential fit, we obtain the one-sided

Fourier transform

L[−Φ̇](ω) =
∑

i

ai
1 + τ2i ω

2
− iω

∑

i

aiτi
1 + τ2i ω

2
. (S7)
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TABLE S4. Multiexponential fitting parameters for acetone.

Pure 1 TEMPOL 1M TEMPOL
ai/D

2 τi/ps ai/D
2 τi/ps ai/D

2 τi/ps
1273 0.985 332 0.558 582 0.260
22260 3.20 23167 3.07 12709 2.87

3869 17.2

TABLE S5. Multiexponential fitting parameters for DMSO.

Pure 1 TEMPOL 1M TEMPOL
ai/D

2 τi/ps ai/D
2 τi/ps ai/D

2 τi/ps
2113 0.398 1505 0.265 2292 0.480
4587 5.46 6683 4.83 40176 22.1
54545 20.8 66415 24.4 6707 394

Thus, for the real and imaginary parts of

ǫ(ω) = ǫ′(ω)− iǫ′′(ω) (S8)

we find

ǫ′(ω) = 1 +
1

V kBT ǫ0

∑

i

ai
1 + τ2i ω

2
(S9)

and

ǫ′′(ω) =
ω

V kBT ǫ0

∑

i

aiτi
1 + τ2i ω

2
. (S10)

Note that the static value of ǫ (reported in Table 1 of
main text), which corresponds to ω = 0, is purely real
and can be obtained from the initial value of the TCF
through the relation:

ǫ = ǫ′(0) = 1 +
1

3V kBT ǫ0
〈M(τ) ·M(τ)〉τ . (S11)

For a mixture, one can calculate the self- and cross-
contributions of the separate components to the TCF
and, thus, to ǫ(ω). Denoting the electric dipole moments
of all the solvent molecules in the simulation box by MS

and all the TEMPOL molecules by MT, we have

Φ(t) = ΦSS(t) + ΦST(t) + ΦTT(t), (S12)

where

ΦSS(t) =
1

3
〈MS(τ) ·MS(t+ τ)〉τ , (S13)

TABLE S6. Multiexponential fitting parameters for DMSO*.

Pure 1 TEMPOL 1M TEMPOL
ai/D

2 τi/ps ai/D
2 τi/ps ai/D

2 τi/ps
3146 0.859 947 0.146 2358 0.790
56644 19.4 57986 15.9 35888 17.0
1456 64.6 1027 49.1 1315 220

ΦTT(t) =
1

3
〈MT(τ) ·MT(t+ τ)〉τ (S14)

and

ΦST(t) =
2

3
〈MS(τ) ·MT(t+ τ)〉τ . (S15)

Using each of these additive components in (S4) allows
us to write

ǫ(ω) = ǫSS(ω) + ǫST(ω) + ǫTT(ω), (S16)

as claimed in the main text. In practice, separate multi-
exponential fits were performed for each of the self- and
cross-TCF and used in (S10).

D. Magnetic dipole-dipole coupling

Magnetic dipole-dipole TCFs can be calculated from
the coordinates of the spins at two instances τ and τ + t
as follows:

Cm(t) = 〈F ∗

m(r, τ)Fm(r, τ + t)〉τ . (S17)

Here,

Fm(r, t) =
Y m
2 (θ(t), φ(t))

r(t)3
, (S18)

Y m
2 ’s are the rank-2 spherical harmonics, and (r, θ, φ) are

the spherical coordinates of the vector between the spins,
r. In a rotationally isotropic environment, the TCFs are
expected to be independent of m. Thus another aver-
aging is performed over m = −1, 0, 1 to calculate an m-
independent TCF, C(t). The dipolar spectral density
function (SDF) is the real part of the Fourier-Laplace
transform of the TCF:

J(ω) = Re{L[C(t)](ω)}. (S19)

The calculation and normalization of near-near and near-
far TCFs was performed as described elsewhere.2 Calcu-
lated correlation lengths were 1 ns for acetone and 2 ns
for DMSO and DMSO* due to the slower decay rate of
the DMSO correlations (cf. Fig. 7 in main text). The
time resolution of the correlation functions was ∆t = 0.2
ps, which is the frequency with which the coordinates
were recorded. This resolution in time limits the fre-
quency bandwidth of the numerical Fourier transform of
the TCF to F = 1/∆t=5000 GHz. The total duration
of the TCF, on the other hand, sets a limit on the fre-
quency resolution. For acetone we had ∆f = 0.5 GHz,
whereas for DMSO and DMSO* the resolution was two
times higher, ∆f = 0.25 GHz, as reflected by the lowest
frequency points in Fig. 8 of the main text.
The near-near TCFs were fit to a sum of decaying

exponential functions in order to calculate the SDFs
through analytical Fourier transforms, since for

CNN(t) =

4
∑

i=1

aie
−t/τi (S20)
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we have

JNN(ω) =

4
∑

i=1

aiτi
1 + ω2τ2i

. (S21)

The intensities and relaxation time scales of the fits are
shown in Tables S7 and S8.

TABLE S7. Near-near TCF fitting parameters for liquids
with 1 TEMPOL.

Acetone DMSO DMSO*
ai/nm

3 τi/ps ai/nm
3 τi/ps ai/nm

3 τi/ps
2.841 0.242 2.801 0.414 2.876 0.395
2.768 1.71 3.237 5.99 3.313 5.62
2.601 9.29 2.768 50.9 2.705 46.1
0.583 36.8 0.469 241 0.730 204

TABLE S8. Near-near TCF fitting parameters for solutions
with 1M TEMPOL.

Acetone DMSO DMSO*
ai/nm

3 τi/ps ai/nm
3 τi/ps ai/nm

3 τi/ps
3.087 0.249 2.827 0.419 2.976 0.392
2.738 1.86 2.994 6.45 3.225 5.25
2.642 10.8 2.434 55.4 2.540 42.2
0.658 44.0 0.799 243 0.735 182

The near-near SDFs calculated by assuming that the
spins are at the molecular centers of mass (COM) were
fit with the finite-size version of the HSCS model. Note
that these are only used in the calculation of the finite-
size correction ∆fs

NN in Eq. (5) of the main text. The
fitting parameters b and D are given in Table 4 of the
main text (rows labeled JNN).
Although not required by our methodology, one can

envision fitting the actual (spins at their correct posi-
tions away from the molecular centers) near-near SDFs
with the finite-size version of the HSCS model. Such
fits are depicted in Fig. S5. The fitting parameters
are b = 0.38 nm, D = 5.95 nm2/ns for acetone, and
b = 0.40 nm, D = 1.03 nm2/ns for DMSO. Clearly, they
are different from the values reported in the last three
rows of Table 4 of the main text. The fits in Fig. S5,
however, seem to be comparable in quality to the ones
for the near-near SDFs calculated by assuming that the
spins are at the molecular COM and shown in Fig. 8a of
the main text.
If the finite-size version of the HSCS model fits the

actual near-near SDFs, why do we use multiexponential
fits to the near-near TCFs [cf. Eq. (S20)]? Even more
importantly, how can a model assuming centered spins
fit the SDFs of off-centered spins? To investigate this
point, the plots in Fig. 8a and Fig. S5 are reproduced in
Fig. S6 with logarithmic scales on both the vertical and
horizontal axes. We observe that the near-near SDFs
calculated from the MD simulations by assuming that
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FIG. S5. Near-near SDFs calculated from the MD simulations
for spins at their actual positions (dashed lines) and best fits
with the finite-size HSCS model (solid lines).

the spins are at the centers of the molecules (dashed lines
in Fig. S6a) agree well with the analytical model (solid
lines) over the whole frequency range. In contrast, the
near-near SDFs calculated from the MD simulations by
using the actual positions of the spins (dashed lines in
Fig. S6b) deviate substantially from the predictions of
the HSCS model at the higher frequencies shown in the
figure. In Fig. S6b the slopes of the analytical lines at
high frequencies are very different than the slopes of the
MD lines. This confirms our expectation that at short
spin-spin distances, as is the case in the near region, the
HSCS model should fail to fit the actual near-near SDF.
A multiexponential fit does an excellent job at fitting the
MD lines in Fig. S6b (not shown).
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FIG. S6. (a) Same as Fig. 8a in main text with logarithmic
vertical axis. (b) Same as Fig. S5 with logarithmic vertical
axis.
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