Supporting Information for

Structural properties of methanol - water binary mixtures within the quantum cluster equilibrium model

G. Matisz^{a,b}, A.-M. Kelterer^{c*}, W.M.F. Fabian^d and S. Kunsági-Máté^{a,b}

^aDepartment of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs, Hungary ^bJános Szentágothai Research Center, Ifjúság 20, H-7624 Pécs, Hungary ^cInstitute of Physical and Theoretical Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9/I, A-8010 Graz, Austria

^dInstitute of Chemistry, University of Graz, NAWI Graz, Heinrichstr. 28, A-8010 Graz, Austria

		B3LYP-D	03		M06-2X	K
	a_{mf}		MAE^a / dm^3	a_{mf}		MAE^a / dm^3
x(MeOH)	Jm ³ mol ⁻¹	b_{xv}	mol ⁻¹	Jm ³ mol ⁻¹	b_{xv}	mol ⁻¹
0.0000	0.1868	1.1206	2.14E-05	0.1858	1.1207	2.45E-05
0.0588	0.1987	1.1045	3.47E-05	0.1977	1.1042	3.47E-05
0.1232	0.2115	1.0878	6.57E-05	0.2105	1.0871	6.33E-05
0.1942	0.2258	1.0728	9.97E-05	0.2246	1.0714	9.64E-05
0.2726	0.2421	1.0615	1.44E-04	0.2409	1.0595	1.42E-04
0.3599	0.2602	1.0531	1.76E-04	0.2595	1.0505	1.77E-04
0.4575	0.2822	1.0481	2.24E-04	0.2801	1.0456	2.27E-04
0.5675	0.3070	1.0465	2.67E-04	0.3018	1.0435	2.75E-04
0.6922	0.3345	1.0479	3.24E-04	0.3288	1.0446	3.42E-04
0.8350	0.3670	1.0520	3.83E-04	0.3538	1.0487	4.16E-04
0.9175	0.3876	1.0542	4.38E-04	0.3760	1.0540	4.77E-04
1.0000	0.4102	1.0583	5.30E-04	0.3962	1.0605	5.42E-04

Table S1 The a_{mf} - b_{xv} parameter pairs for the methanol – water binary mixture with inclusion of cubic *c8* clusters.

^a Mean absolute error between calculated and experimental isobars

		B3LYP-I	03		M06-2X	
	$a_{mf}/$		MAE^{a}/dm^{3}	$a_{mf}/$		MAE^a / dm^3
x(MeOH)	Jm ³ mol ⁻¹	b_{xv}	mol ⁻¹	Jm ³ mol ⁻¹	b_{xv}	mol ⁻¹
0.0000	0.1870	1.1216	1.32E-05	0.1860	1.1220	1.40E-05
0.0588	0.1989	1.1051	1.86E-05	0.1978	1.1049	2.45E-05
0.1232	0.2116	1.0881	4.60E-05	0.2105	1.0874	1.93E-05
0.1942	0.2258	1.0726	7.81E-05	0.2246	1.0714	7.94E-05
0.2726	0.2412	1.0604	1.22E-04	0.2400	1.0592	1.25E-04
0.3599	0.2607	1.0518	1.54E-04	0.2583	1.0494	1.61E-04
0.4575	0.2819	1.0470	2.01E-04	0.2799	1.0443	2.13E-04
0.5675	0.3069	1.0453	2.46E-04	0.3035	1.0427	2.66E-04
0.6922	0.3354	1.0472	3.05E-04	0.3296	1.0439	3.37E-04
0.8350	0.3690	1.0529	3.71E-04	0.3572	1.0486	4.19E-04
0.9175	0.3878	1.0563	4.30E-04	0.3744	1.0540	4.81E-04
1.0000	0.4102	1.0583	5.30E-04	0.3962	1.0605	5.42E-04

Table S2 The a_{mf} - b_{xv} parameter pairs for the methanol – water binary mixture with cubic c8 clusters excluded from the cluster set.

^a Mean absolute error between calculated and experimental isobars

Name of	ΔG^{298} /			
cluster	H-bond	at x=0.0	at x=0.3599	at x=1.0
<i>m1</i>	0.00	0.00	0.01	0.04
w1	0.00	0.03	0.02	0.00
<i>m</i> 2	16.89	0.00	0.00	0.00
mlwl	12.06	0.00	0.00	0.00
wlml	11.67	0.00	0.00	0.00
w2	11.06	0.01	0.00	0.00
m3r	6.57	0.00	0.00	0.01
m2w1r	5.49	0.00	0.00	0.00
m1w2r	5.76	0.00	0.00	0.00
w3r	5.99	0.01	0.00	0.00
m4r	4.49	0.00	0.07	1.21
m3w1r	3.33	0.00	0.14	0.00
m2w2r	4.20	0.00	0.07	0.00
m1w3r	2.82	0.00	0.17	0.00
w4r	3.68	0.35	0.09	0.00
m5r	4.30	0.00	1.59	46.06
m4w1r	3.85	0.00	1.17	0.00
m3w2r	4.25	0.00	0.89	0.00
m2w3r	4.51	0.00	0.79	0.00
m1w4r	4.58	0.00	0.94	0.00
w5r	4.15	3.83	0.63	0.00
mбr	5.99	0.00	1.04	50.24
m5w1r	5.92	0.00	3.42	0.00
m4w2r	5.55	0.00	1.89	0.00
m3w3r	5.10	0.00	1.36	0.00
m2w4r	5.46	0.00	0.81	0.00
m1w5r	4.96	0.00	0.52	0.00
wбr	5.07	5.59	0.59	0.00
m7r	6.09	0.00	0.03	2.43
т6w1r	5.80	0.00	0.02	0.00
m5w2r	6.14	0.00	0.01	0.00
m4w3r	5.79	0.00	0.01	0.00
m3w4r	6.07	0.00	0.00	0.00
m2w5r	6.54	0.00	0.02	0.00
m1w6r	5.33	0.00	0.07	0.00
w7r	7.06	3.52	0.24	0.00

Table S3 Gibbs free energy of interaction per hydrogen bond and cluster populations at T = 298K for x(MeOH) = 0.0 (neat water), 0.36, and 1.0 (neat MeOH), computed with B3LYP-D3.

m6w1bc	5.30	0.00	0.01	0.00
m5w2bc	4.73	0.00	0.01	0.00
m4w3bc	4.68	0.00	0.00	0.00
m3w4bc	5.18	0.00	0.01	0.00
m2w5bc	4.38	0.00	0.03	0.00
m1w6bc	4.07	0.00	0.03	0.00
w7bc	3.81	0.31	0.02	0.00
m4w1s	8.68	0.00	0.00	0.00
m3w2s	8.65	0.00	0.00	0.00
m2w3s	7.99	0.00	0.00	0.00
m1w4s	7.13	0.00	0.00	0.00
w5s	7.09	0.00	0.00	0.00
m5w1s	6.93	0.00	0.01	0.00
m4w2s	6.96	0.00	0.01	0.00
m3w3s	5.93	0.00	0.00	0.00
m2w4s	5.88	0.00	0.00	0.00
m1w5s	6.11	0.00	0.00	0.00
w6s	6.22	0.03	0.00	0.00
m8w1s	5.54	0.00	0.04	0.00
m7w2s	5.73	0.00	0.05	0.00
m6w3s	5.92	0.00	1.29	0.00
m5w4s	6.19	0.00	0.52	0.00
m4w5s	6.05	0.00	0.14	0.00
m3w6s	6.07	0.00	1.31	0.00
m2w7s	5.75	0.00	0.36	0.00
m1w8s	5.38	0.00	0.34	0.00
w9s	5.49	11.93	0.34	0.00
m10w1s	6.08	0.00	0.12	0.00
m9w2s	7.55	0.00	0.31	0.00
m8w3s	7.81	0.00	0.14	0.00
m7w4s	7.57	0.00	0.09	0.00
т6w5s	7.32	0.00	0.18	0.00
m5w6s	7.40	0.00	0.13	0.00
m4w7s	7.56	0.00	0.65	0.00
m3w8s	7.18	0.00	0.24	0.00
m2w9s	6.35	0.00	0.26	0.00
m1w10s	6.10	0.00	0.15	0.00
wlls	6.23	5.38	0.06	0.00
m3w1r-m1	6.78	0.00	0.00	0.00
m5r-w1	6.88	0.00	0.00	0.00
m3w1r-				
2ml(1,1)	9.44	0.00	0.00	0.00

m3w1r-				
2m1(1,3)	10.12	0.00	0.00	0.00
m2·mw·m2	3.98	0.00	0.10	0.00
mw·mw·m2	4.79	0.00	0.17	0.00
mw·mw·mw	4.38	0.00	0.09	0.00
w2·mw·mw	3.76	0.00	0.13	0.00
mw·w2·mw	4.78	0.00	0.05	0.00
w2·mw·w2	3.99	0.00	0.12	0.00
w2·w2·w2	4.43	0.65	0.07	0.00
mw·w2·w2	4.32	0.00	0.06	0.00
m2·w2·mw	5.21	0.00	0.26	0.00
$m2 \cdot w2 \cdot m2$	4.45	0.00	0.05	0.00
m5w3c	2.19	0.00	1.72	0.00
m4w4c	1.43	0.00	9.19	0.00
m3w5c	1.33	0.00	30.46	0.00
m2w6c	1.68	0.00	11.84	0.00
mlw7c	1.73	0.00	19.11	0.00
w8c	2.26	68.37	3.03	0.00
m4w4c-m1	2.96	0.00	0.05	0.00

1.0

0.8

0.4 0.6 x(MeOH)

2 0

0.0

0.2

0.4 0.6 x(MeOH)

0.8

1.0

Figure S1 Number of clusters corresponding to a specific molar fraction x(MeOH).

2 0

0.0

0.2

Figure S2 Comparison of B3LYP-D3/QZVP//TZVP and M06-2X/aug-cc-pVTZ interaction energies with MP2(fc)-CP/6-311++G(d,p) results³⁷ for the methanol ring clusters.

Figure S3 Comparison of B3LYP-D3/QZVP//TZVP with M06-2X/aug-cc-pVTZ interaction energies.

Figure S4 Population (%) of ■...pure methanol clusters, ●...pure water cluster, ▲...mixed MeOH–water clusters at 298 K based on M06-2X calculations.

Figure S5 Plot of individual cluster distributions including c8 cubic clusters (for clarity, only clusters > 10% are shown) at 298K based on M06-2X calculations.

Figure S6 Comparison of experimental and calculated excess enthalpies H^E , entropies S^E , and Gibbs free energies G^E of mixing, based on M06-2X calculations, for the full cluster set as well as the cluster set without the cubic *c8* clusters at different molar ratios.^a

^aexperimental values for H^E are taken from refs. ⁸⁹⁻⁹⁰, those for S^E and G^E from ref. ⁵⁶.

Figure S7 Comparison of experimental⁹²⁻⁹³ and B3LYP-D3 calculated excess heat capacities of mixing C_p^{E} at T = 298.15K.

Figure S8 Comparison of M06-2X calculated and experimental heat capacities $C_p^{67, 92-93}$ and excess heat capacities of mixing $C_p^{E 92-93}$ at T = 298.15K.

