

Figure S2. Membrane expansion induced by ENTH_GFP domain

a) Membrane binding of ENTH_GFP (black) and corresponding change in GUV membrane area (blue). b) A nonlinear relation between the ENTH_GFP density on membrane and the amount of area expansion. c) The expansion in membrane area is accompanied with a dilution of lipid dye in the membrane similar as in Figure S1b.

Bulk ENTH_GFP concentration, 200nM. GUV composition: 2% PI4,5P2, 98%POPC.

Supplementary Figure 3

Figure S3. Comparison of area expansion constant on different lipid composition

Data on GUVs of DOPS/DOPE/DOPC=45/30/25 and pure DOPS GUVs are the same as in Fig. 3. In the case with GUVs of DOPS/DOPC=45/55 (average of 6 GUVs), the weak membrane binding (protein density<200 μ m⁻²) of α -synuclein leads to a very high uncertainty in determining the area expansion constant on this lipid composition. Student t-test, ***p<0.001, N.S. p>0.1. The comparison is carried out under the same bulk protein concentration (250nM).

Supplementary Figure 4

a)

b)

Figure S4. Membrane binding of α-synuclein does not lead to pore formation on the GUV

a) Representative confocal image of pure DOPS GUVs (50 μ M) co-incubated in 8 μ M α -synuclein.

b) Representative confocal image of an individual micropipette-aspirated GUV

(DOPS/DOPE/DOPC=45/30/25) transferred into 500nM α -synuclein with an applied membrane tension =0.2mN/m.

Green: protein channel. Red: lipid channel. Scale bar: $10\mu m$. In both cases, green fluorophore labeled proteins are not permeable to the inside of the GUVs. Furthermore, the GUV in b) remain intact under a high membrane tension. Both are evidence to support that there are no α -synuclein size pores on the GUV.

Supplementary Figure 5

Figure S5. Comparison of GUV binding isotherm

α-Synuclein binding isotherm on GUVs with 100%DOPS (open). Fitting the isotherm to $\rho = \rho_{max}/(1+K_D/[P])$, the resulted binding constant is $K_D=120\pm30$ nM, maximum protein density on membrane is $\rho_{max}=1700\pm70$ µm⁻². α-Synuclein binding isotherm on GUVs with DOPS/DOPE/DOPC=45/30/25 (closed) has significantly less binding towards α-synuclein, with a dissociation constant $K_D=3000\pm1000$ nM, maximum protein density on membrane $\rho_{max}=200\pm100$ µm⁻². Lipid concentration: 50µM. Both isotherms are average of two independent trials with error bars representing standard deviation, each trail includes 15~20 GUVs per protein concentration. Buffer: 7 mM Hepes, 50 mM NaCl, pH 7.