Supplemental Information

Understanding chemical expansion in perovskite-structured materials

Dario Marrocchelli^{1,2,3}*, Nicola H. Perry^{3,4}* and Sean R. Bishop^{3,4} ¹Department of Nuclear Science and Engineering, MIT, Cambridge, USA ²School of Chemistry, Trinity College Dublin, Dublin 2, Ireland ³Department of Materials Science and Engineering, MIT, Cambridge, USA ⁴International Institute for Carbon Neutral Energy Research (I²CNER), Kyushu University, Nishi-ku Fukuoka, Japan * Equal contribution

Lattice relaxations around a vacancy from DFT

Figure 1: Lattice relaxation around an oxygen vacancy (black cube) in Ga-doped $SrTiO_{3.\delta}$ from DFT simulations. Green, light blue, purple and red spheres are La, Ti, Ga and O ions, respectively. We note that, for the sake of clarity, the sphere radii in this figure are not always proportional to the ionic radii.

Figure 2: Lattice relaxation around an oxygen vacancy (black cube) in Sr-doped LaGaO_{3- δ} from DFT simulations. Green, dark blue, light green (inside the octahedron) and red spheres are La, Sr, Ga and O ions, respectively. We note that, for the sake of clarity, the sphere radii in this figure are not always proportional to the ionic radii.

Figure 3: Predicted lattice parameters (using equation 3) vs experimental lattice parameters. The data was fitted with a straight line, which slope we find is 0.9997, showing an almost prefect agreement.

Table 1. Table with the r_V and chemical expansion coefficient calculated from the experimental data on doped LaGaO₃. For B-site substitution, we only fitted the 0-20 % data points, as the lattice parameter shows a non-Vegard behaviour for Mg concentrations higher than 20%.

Material	α_S	r _V	Reference	
A-site substitution				
$La_{1-x}Sr_{x}GaO_{3}$	0.045	1.23	1	
$La_{1-x}Sr_{x}Ga_{0.9}Mg_{0.1}O_{3}$	0.051	1.27	1	
$La_{1-x}Sr_{x}Ga_{0.95}Mg_{0.05}O_{3}$	0.073	1.39	2	
$La_{1-x}Sr_xGa_{0.9}Mg_{0.1}O_3$	0.070	1.37	2	
$La_{1-x}Sr_{x}Ga_{0.85}Mg_{0.15}O_{3}$	0.044	1.23	2	
$La_{1-x}Sr_{x}Ga_{0.80}Mg_{0.20}O_{3}$	0.055	1.29	2	
$La_{1-x}Sr_{x}Ga_{0.75}Mg_{0.25}O_{3}$	0.049	1.26	2	
$La_{1-x}Sr_{x}Ga_{0.7}Mg_{0.30}O_{3}$	0.058	1.31	2	
B -site substitution				
$La_{0.9}Sr_{0.1}Ga_{1-x}Mg_{x}O_{3}$	0.01	1.38	1	
$La_{0.95}Sr_{0.05}Ga_{1-x}Mg_{x}O_{3}$	0.0078	1.36	2	
$La_{0.9}Sr_{0.1}Ga_{1-x}Mg_{x}O_{3}$	0.0035	1.32	2	
$La_{0.85}Sr_{0.15}Ga_{1-x}Mg_{x}O_{3}$	0.0059	1.34	2	
$La_{0.80}Sr_{0.20}Ga_{1-x}Mg_{x}O_{3}$	-0.0064	1.22	2	
$La_{0.75}Sr_{0.25}Ga_{1-x}Mg_{x}O_{3}$	0.0041	1.32	2	
$La_{0.70}Sr_{0.3}Ga_{1-x}Mg_{x}O_{3}$	0.0002	1.28	2	

Figure 4. Comparison of the lattice parameter obtained from three random cation distributions plotted vs. the dopant cation concentration in Sr-doped LaAlO₃. In all cases, the difference is minuscule and the points overlap almost perfectly.

Figure 5. Lattice parameters of Sr-doped LaAlO₃ predicted with DFT from a full cell relaxation (cell shape, volume and atom positions allowed to relax) and from a fixed cell shape calculation (in which only the volume and atom positions can change). The lattice parameters are virtually the same, the difference being less than 0.05%.

Table 2.	Ene	rgy of t	he three	e differ	ent c	cation	distr	ibution	s for	each s	strontium	concer	itratio	n [Sr]	. The la	ist co	olumn
reports	the n	naximun	n obser	ved en	ergy	differ	ence	norma	lized	by the	number	of unit	cells	in the	system	. It c	an be
clearly s	seen t	hat thes	se value	s are v	ery s	mall.											

[Sr]	$E_1 (eV)$	$E_2 (eV)$	$E_1 (eV)$	Max ΔE (eV/u.c.)
0.0	-1282.31	-1282.31	-1282.31	0.0
0.0625	-1263.35	-1263.50	-1263.32	0.005
0.125	-1244.04	-1244.45	-1244.44	0.013
0.1875	-1225.33	-1224.95	-1225.47	0.016
0.25	-1207.36	-1207.29	-1207.37	0.002

References

Datta, P. Majewski and F. Aldinger, *J. Alloys Compd.*, 2007, **438**, 232–237.
Huang, R. S. Tichy and J. B. Goodenough, *J. Am. Ceram. Soc.*, 1998, **81**, 2565–2575.