Electronic Supplementary information

Qualifying label components for effective biosensing by advanced high-throughput SEIRA methodology

Andrea Hornemann^a*, Diane Eichert^b, Sabine Flemig^b, Gerhard Ulm^a, Burkhard Beckhoff^a

^a Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany
^b Elettra-Sincrotrone Trieste S.C.p.A. di interesse nazionale, Strada Statale 14, 34149 Trieste, Italy
^c BAM Bundesanstalt f
ür Materialforschung und –pr
üfung, Richard-Willst
ätter-Str.10, 12489 Berlin, Germany

*Author for correspondence: Dr. Andrea Hornemann, Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany <u>andrea.hornemann@ptb.de</u> Tel. +4930 3481 7183 Fax. +4930 3481 7103

Comparison between SERS and SEIRA

The enhancement factor ¹ of SERS ranges from 10⁶ to 10¹⁰, and the Raman cross section ranges from about 10⁻³¹ to 10⁻²⁹ cm²/molecule ², thus resulting in effective SERS cross sections of 10⁻²³ cm²/molecule to 10⁻²² cm²/molecule (or: 10^{-21} cm²/molecule to 10^{-19} cm²/molecule), respectively. The enhancement factors for SEIRA are in the range of about 10¹ to 10^{4} ³, and are leading to a similar or even somewhat higher speciation sensitivity as the average cross-section for infrared absorption is about nine orders of magnitude higher than in the optical range (from 10^{-22} cm²/molecule to 10^{-20} cm²/molecule) ³, thus resulting in an effective SEIRA cross section from about 10^{-24} cm²/molecule to 10^{-22} cm²/molecule (or: 10^{-21} cm²/molecule (or: 10^{-21} cm²/molecule), respectively.

An estimate for the bioassay detection limit with SEIRA readout can be derived from a comparison with typical SERS readout values providing that the biolabel binding mechanisms are somewhat similar. Taking into account now both the typical SERS detection limit range being located in the fmol to pmol range, and, in addition, the ratio of typical SERS to SEIRA enhancement factors being about 10³, the typical SEIRA detection limit range can be estimated to be in the pmol to nmol range ⁵.

Comparison between conventional FTIR and SEIRA

While conventional FTIR presents the advantage of significantly probing a molecule signal with high sensitivity, SEIRA averages between 10 and 50 times the sensitivity of FTIR. The large advantage of SEIRA over FTIR however is the economy of time spent collecting the measurement. For SEIRA, only a handful of scans are needed, and not long acquisition (the S/N ratio is orders of magnitude lower with FTIR), which is an asset to collect structural information extremely rapidly and ultimately to monitor in-situ or online some biological process. In addition, molecules on metal surfaces show IR absorption 10–1500 times more intense than would be expected from conventional measurements without the metals^{4, 5}.

Inherent to the SEIRA technique compared to conventional FTIR is the metal surface influence that may lead to some spectral shapes, shifts and changes in intensities⁶.

Reagents

For the preparation of colloidal suspensions of Au NP in water, gold (III) chloride trihydrate (99.9%, Sigma-Aldrich), and trisodium citrate dihydrate (99%, Merck) were employed. For all experimental procedures, ultrapure water (18 M Ω ·cm⁻¹, MicroLab UV, TKA GmbH) was applied. For the preparation of Au NP immobilized on MIR slides (KevleyTechnologies, USA), (3-Aminopropyl) trimethoxysilane (APTMS, 97%, Alfa Aesar) was used. Goat Anti-Mouse IgG (lot no. ABN-PAB9354-L002, Biozol, Germany) was employed for preparation of fluorophore-labeled antibody conjugates. The antigen Mouse Anti-Goat IgG (lot no. 6158-01, Biozol, Germany) was purchased in batch, predissolved at a concentration of 0.5 mg/ml in borate buffered saline (100 mM, pH~8.2). The flurophores Rhodamine B isothiocyanate (RITC, >70%, Sigma-Aldrich), Fluorescein 5(6)-isothiocyanate (FITC, \geq 90%, Sigma-Aldrich) and Sulforhodamine B (SULFO, 75%, Sigma) were utilized for the coupling procedures. N, N-Dimethylformamide (DMF, 99.8%, Sigma-Aldrich) and sodium bicarbonate buffer (0.1 M, pH~9, Sigma-Aldrich) were used as solvents.

Au NP-immobilization on APTMS functionalized low-e-MIR substrates for SEIRA studies

For the preparation of Au NP immobilized on MIR slides, different concentrations of (3-Aminopropyl) trimethoxysilane (APTMS, 97%, Alfa Aesar) were considered for evaluating the degree of NP immobilization measured by UV-Vis/NIR spectroscopy. APTMS is an agent known for amine functionalization and covalent immobilization of antibodies in highsensitivity immunoassays ⁷. The degree of NP immobilization can be observed by the position and shape of the plasmon band of the Au NP. As a substrate bottom layer, low-e-slides were immersed into a solution of 0.5%, 1% and 1.5% APTMS. For the three APTMS concentrations, two incubation times, 2 h and 24 h, were used. The Au NP immobilization approach with respect to different concentrations of APTMS and incubation times yielded an APTMS concentration of 1% and short incubation time of 2 h being optimal since a small degree of NP aggregation on the substrate was induced. After the incubation time, the silanized slides were rinsed in ultrapure water and soaked into Au NP solution for 4 days and rinsed with ultrapure water after incubation time and allowed to dry in a desiccator. For FTIR- micro-spectroscopy, 20 μ l of the antibody-fluorophore conjugates were dropped-coated onto the Au NP functionalized slide.

UV-Vis/NIR Spectroscopy, Transmission Electron Microscopy (TEM)

The Au NP immobilized on the APTMS-modified substrate were characterized by Atomic Force Microscopy. In order to prove the existence of synthesized Au NP, UV-Vis/NIR Spectroscopy was used for the detection of the plasmon band being characteristic for NP systems. An extinction measurement of the Au NP suspension was performed with a double-beam UV-Vis/NIR spectrophotometer (V-670, Jasco, Germany).

For the determination of the particle dimensions and morphologies, a TEM TECNAI G² 20 S-TWIN (FEI CompanyTM, USA) was employed. The NP solutions (2 μ l) were pipetted onto carbon-coated TEM copper grids (200 mesh, PLANO, Germany) and allowed for air drying. An acceleration voltage of 200 kV was applied for the acquisition of TEM micrographs. Related to the 1×1 inch CCD-chip of the camera an optical magnification ranging from a factor of 20,000 to a factor of 430,000 was used.

Preparation of fluorophore-labeled antibody conjugates

For preparation of fluorophore-labeled Goat Anti-Mouse IgG, 10 mg/ml of the antibody was dissolved in sodium bicarbonate buffer (0.1 M, pH~9, Sigma-Aldrich). The fluorophore Rhodamine B isothiocyanate (RITC) was dissolved in N,N-Dimethylformamide (DMF) at a concentration of 5 mg/ml. Then, a volume of 100 μ l of the RITC-solution was pipetted to the antibody solution and allowed to react for 8 h at 4 °C. For the preparation of Goat Anti-Mouse IgG-FITC and Goat Anti-Mouse IgG-SULFO conjugates, the fluorophores Fluorescein 5(6)-isothiocyanate (FITC) and Sulforhodamine B (SULFO) were dissolved in DMF, and pipetted to the Goat Anti-Mouse IgG antibody solution, respectively. After 8 h incubation time at 4 °C in the dark, the conjugates were purified by spin-protocol from unbound dye molecules applying a PD-10 desalting column (Mr~5000 Da, GeHealthcare, Germany). The conjugates were purified by centrifugation for 2 min at 1000×g (Hereaus Megafuge16R, ThermoScientific, USA). Sodium bicarbonate buffer (0.1 M, pH~9) was used as eluent. No adjustment to the alkaline milieu was necessary for the incubation of the antibodies with NP suspensions since both antibodies and fluorophores were already prepared under alkaline conditions along with the respective coupling procedures.

MALDI-TOF-MS of the fragmented fluorophore-antibody conjugates

For Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-TOF-MS), trypsin was used as digestive enzyme for the fragmentation of the antibody conjugates. For the antibody digestion, 20 µg of lyophilized trypsin (Sigma) was dissolved in 20 µl of hydrochloric acid (1 mM, pH~3.0) and ammonium bicarbonate digestion buffer (100 mM, pH~8.5). For an antibody protein concentration of 10 µg (reference), 0.5 g trypsin was used and diluted at 1:20 w/w. Trypsin was pipetted at a concentration of 1:100 w/w the conjugate suspensions. Incubation was performed at 37 °C for 2 to 8 h. Purification was performed with ZebaSpin columns (Pierce, Belgium). For MALDI measurements, the samples were embedded in a sample matrix that consisted of trans-3.5-dimethoxy-4-hydroxysinapin acid (>99%, Protea, USA). The digested samples, that is, the reference standard and the antibody conjugates were mixed with the sample matrix which consisted of a mixture containing acetonitrile (ACN, 99.8%, anhydrous, Sigma Aldrich) and trifluoracetic acid (TFA, 99.5%, Sigma) with a molar ratio of ACN/TFA (70/30 Vv), respectively. Measurements were performed with a AutoFlex III MALDI-TOF mass spectrometer (Bruker Daltonik, Germany) using an UV-laser (λ = 337 nm) with a pulse-length of 3 nm and an acceleration voltage of 20 kV. Mass spectra of fragmented antibody conjugates were examined in the region from 340 m/z to 600 m/z. These studies were performed in order to check the existence of molecule ions referring to uncoupled dye molecules in the conjugate.

Additional information on Results and discussions

Characterization of the Au NP suspension for the preparation of SEIRA substrates

Figure S-1 depicts the extinction spectrum of the Au NP suspension. The characteristic position of the plasmon resonance band of the colloidal Au is located at 530 nm. The insets show the TEM images of the Au colloid, and the size distribution of the Au NP is determined to range from 20 nm to 40 nm (Fig. S-1). Au NPs show a spherical-shaped to slightly rod-shaped morphology.

Fig. S-1. Extinction spectrum of the Au NP suspension with the corresponding TEM micrographs (scale bars: 100 nm).

MALDI-TOF-MS analysis of the fragmented fluorophore-antibody conjugates

The detection of covalently-linked molecules allows to reveal the existence of uncoupled dye molecules in the conjugate which can be identified by their molecule ions ^{8, 9} via mass spectroscopy. Figure S-2 shows the MALDI data of the fragmented (A) antibody reference Goat Anti-Mouse IgG, (B) antibody-FITC conjugate, (C) antibody-RITC conjugate and (D) antibody-SULFO conjugate.

The m/z values for the fluorophores FITC, RITC and SULFO correspond to their molecular weights that lie at 389.38 m/z, 536.08 m/z and 577.11 m/z. The obtained MALDI spectra prove that the mono-isotopic molecule ions of the fragmented antibody and that no molecule ions originating from the coupled dyes are detectable which gives a qualitative evidence of a successful coupling procedure of the fluorophores to the antibody ¹⁰. This is important in case of a distinct and reliable SEIRA characterization of labeled antibodies only whose MIR signatures are studied for immunoassay applications.

Fig. S-2. MALDI-TOF-MS spectra of the fragmented (A) Goat Anti-Mouse IgG antibody standard, (B) antibody-FITC conjugate, (C) antibody-RITC conjugate and (D) antibody-SULFO conjugate.

Table S-1. Band assignments of the Infrared spectra and enhanced infrared spectra (for Au NP) of the label components Goat Anti-Mouse IgG, here as 'Goat' (aref.^{11, 12}), FITC (bref.^{13, 14}) and Goat-FITC (cref.^{12, 14-18}). **Enhanced modes** and **new emerging bands** are highlighted in **bold**. Abbreviations: δ deformation, v stretching, *s*, *as* (as)symmetrical.

Goat	assignments	Au	aassignments	FITC	^b assignments	Au	^b assignments	Goat-	cassignments	Au	cassignments	Mouse	assignments	Au	assignments
		NP-				NP-		FITC		NP-		IgG		NP	
		Goat				FITC				Goat-				Mouse	
10.64	<u> </u>	1050	DO	0.00		1100	COH	1100		FIIC	<u> </u>	1000	<u> </u>	IgG	<u> </u>
1064	v C-O-C	1250	$v_{as} PO_2^-$	982	v C-O-C		v COH	1103	v C-O-C	1227	v C-O	1022	v C=0	1003	v C=0
1242	$v_{as} PO_2^{-1}$	1334	v C=N	1105	vC-0-C	1203	v C-O	1165	0 CH	1253	$v_{as} PO_2^{-1}$	105/	v C=0	10/3	vC=O
1088	0 CH,	1388	0 CH3	11/6	0 C-OH	1304	v C-O	1242	$V_{as} PO_2^{-1}$	1347	xanthene	11/3	VC-OH	11/3	VC-OH
1250	V С-О-С 8 СЦ	1442	S CU	1247	NC O	1200	N C-N	1224	vanthana	1200	N=O	1244	N C-N	1244	» C–N
1556	0 CH3	1442	$O_{as} C \Pi_3$	1247	v C-0	1300	VC-N,	1554	ring v C C	1399	0 N-0	1344	V C-N	1344	v C-N
1450	δ CH.	1527	Amid II	1313	v C=N	1/58	х сн.	1388	V C = N	1460	v CH.	1303	v C=N	1441	δ CH.
1450	Uas CI13	1327	δ Ν-Η. ν C-	1515	VC IV	1450		1500	v C-N,	1400	v _{as} CII3	1575	VC N	1441	
			N N												
1535	Amid II,	1628	Amid I	1388	v C=N,	1496	central ring	1450	vas CH3	1527	δCH3	1441	δ ΝΗ	1597	arom. v C-
	δ N-H, ν C-		(v C=O,		v C-C		breathing		45 5		C C				С
	N		δ CN, δ N-				v C-C								
			H)												
1635	Amid I	2870	v _s CH ₃	1450	$\delta_{as} CH_3$	1597	arom.	1525	ν C=N,	1597	arom. v C-C	1641	Amid I	1641	Amid I
	(v C=O,						v C-C		arom. v C-C				(v C=O,		(v C=O,
	δ CN, δ N-												δ CN, δ N-		δ CN, δ N-
	H), arom. v												H), arom. v		H), arom. v
1.50	C-C		CII	1.40.6		1-20		1.40		1.00	G	22.40	C-C		C-C
1736	v C=0	2931	v _{as} CH ₂	1496	central ring	1738	v C=O	1643	arom. v C-C	1643	arom. v C-	3340	νNH	3278	v NH
					breathing						C				
2077	N CH	2062	м. С -С Ц	1527	VC-C	1006	» CO	1729	NC-0	2286	11 OH			2415	NH
20//	$V_{s} C \Pi_{2}$	3002	$v_{as} C - C - \Pi_2$	1327	V C - N,	1000	vco	1/30	v C=0	5280	VОП			5415	VINI
2962	v. CH ₂	3109	$v = C = C - H_{2}$	1652	arom v C-C	2029	v CO	2885	v CH					3492	v NH
3070	v _{as} CH ₂	3278		1738	v C = 0	2029		2005	$v_s CH_2$					5472	VILL
3294	v NH	3649	v NH	2953	Vas CH3			3070	$v_{as} C = C - H_2$						
		3720	v OH		· us =5			3286	v NH						
								3633	νNH						
								3720	νOH						

Table S-2. Band assignments of the Infrared spectra and enhanced infrared spectra (for Au NP) of the label components Goat Anti-Mouse IgG, here as 'Goat' (aref. ¹¹), RITC
(^b ref. ^{13, 14}) and Goat-RITC (^c ref. ^{12, 14-18}). Enhanced modes and new emerging bands are highlighted in bold . Abbreviations: δ deformation, v stretching, <i>s</i> , <i>as</i> (as)symmetrical.

RITC	^b assignments	Au NP-	^b assignments	Goat-	cassignments	Au NP-	cassignments	
		RITC		RITC		Goat-RITC		
964	v C=O	964	v C=O	976	v C=O	1180	δ С-ОН	
976	v C=O	1010	v C=O	1026	v C=O	1334	xanthene ring v C-C	
1056	v C=O	1072	v C=O	1080	v C=O	1390	δ CH3	
1149	v C=O	1149	v C=O	1134	δСН	1581	arom. v C-C	
1172	δ С-ОН	1172	δ С-ОН	1180	v COH	1639	arom. v C-C	
1273	v C-OH	1211	v C-O	1242	vas PO2 ⁻	2869	$\nu_{s} CH_{3}$	
1342	xanthene ring v	1273	v C-OH	1273	ν C-OH	2931	$\nu_{as} CH_2$	
	C-C							
1412	δ Ν=Ο	1327	xanthene ring v C-C	1334	xanthene ring v C-C	3078	$v_{as} C=C-H_2$	
1453	$\delta_{as}CH_3$	1381	v C=N, v C-	1412	δ Ν=Ο	3204	νOH	
1520		1410		1450	S CH	2296		
1520	$o CH_{3}, v C=N,$ arom. v C-C	1412	0 N=U	1456	o _{as} CH ₃	3286	V NH	
1589	arom. v C-C	1453	δ _{as} CH ₃	1496	central ring			
					breathing			
					v C-C			
1638	Amid I	1496	central ring	1589	arom. v C-C			
	(v C=O,		breathing					
	δ CN, δ N-H),		v C-C					
	arom. v C-C							
1743	v C=O	1589	arom. v C-C	1647	arom. v C-C			
2941	$v_{as} CH_2$	1666	v C=O	1751	v C=O			
		1743	v C=O	1813	v C=O			
		2665	v C-H	2869	$v_{s} CH_{3}$			
		2941	vas CH ₂	2931	$v_{as} CH_2$			
		3224	νNH	3076	v_{as} N-CH ₃			
				3286	ν NH			

Table S-3. Band assignments of the Infrared spectra and enhanced infrared spectra (for Au NP) of the label components Goat Anti-Mouse IgG, here as 'Goat (ref¹¹), SULFO (^bref.^{13, 14}), and Goat-SULFO (^cref.^{12, 14-18}). **Enhanced modes** and **new emerging bands** are highlighted in **bold**. Abbreviations: δ deformation, v stretching, *s*,*as* (as)symmetrical.

SULFO	^b assignments	Au NP-	Au NP- ^b assignments		Goat- ^c assignments		cassignments
	~ ~ ~	SULFO		SULFO		SULFO	
972	v C-O-C	972	v C-O-C	972	v C-O-C	1034	δCH
1034	δCH	1034	ð CH	1034	δCH	1080	v C-O-C
1080	v C-O-C	1080	v C-O-C	1080	v С-О-С	1126	xanthene ring v C-C
1134	δ CH, ν C-C	1188	v C-C	1126	xanthene ring v C-C	1196	v C-C
1196	v C-C	1226	xanthene ring v C-C	1188	v C-C	1242	v C-O
1242	v C-O	1327	xanthene ring v C-C	1242	v C-O	1350	v N=O
1342	xanthene ring	1396	v C=N	1273	v C-OH	1412	$v_s CH_2$
1419	$v_{s} CH_{2}$	1496	central ring breathing	1342	xanthene ring v C-C	1458	δ ΝΗ
1466	Vas CH3	1535	δ CH ₃	1412	v _s CH ₂	1504	δ NH. ν C-O
1535	arom. v C-C	1581	arom. v C-C	1466	Vas CH3	1612	δ NH ₂
1597	arom. v C-C	1643	arom. v C-C	1535	δCH ₃	1658	Amid I
					0		(v C=O, δ CN, δ N-H), arom. v C-C
1651	Amid I (ν C=O, δ CN, δ N-H), arom - ν C-C	1705	v C-O	1597	arom. v C-C	1844	ν C=O
1874	v C-O	1874	ν C-O	1658	Amid I (ν C=O, δ CN, δ N-H), arom. ν C-C	1928	ν C=C
2870	$v_{s} CH_{3}$	2870	v _s CH ₃	1844	v C=O	2870	v _s CH ₃
2970	$v_{as} CH_3$	3186	arom. v C-C + δ CH ₃	1928	v C=C	2931	v C=C
3217	νNH	3325	v NH	2870	v, CH3	2977	Vas CH3
3278	v NH, OH	3780	νOH	2977	v_{as} CH ₃	3278	v NH
3355	νNH			3278	v NH		
3425	v NH						
3726	νOH						

Studies on complex biolabels in the Amide I/II and ester regions

If we compare the IR spectra of all bioconjugates we can predominantly figure out spectral features in the region of C–O stretches that appear as two or more bands in the region 1300–1000 cm⁻¹ along with fluorophore specific modes. The SEIRA signatures display different shapes of modes along with shifted bands and enhanced spectral features. From these observations we infer that the SEIRA technique can contribute to the development and characterization of new complex SEIRA-based biolabels which in turn can be implemented for prospective bio-assay approaches. With the SEIRA readout we open new opportunities for discriminating multiple biolabels that entail similar features compared to conventional IR data, but are definitely unique. This enforces the discrimination capabilities between analyte molecules (antigens) that may couple to these SEIRA biolabels.

Fig. S-3. Mid-infrared spectra (gray lines) and SEIRA signatures (black lines): (A) antibody-FITC conjugate and Au NP- antibody-FITC biolabel, (B) antibody-RITC conjugate and Au NP-antibody-RITC biolabel, and (C) antibody-SULFO conjugate and Au NP-antibody-SULFO biolabel. For studies on molecular structures of complex biologically relevant samples such as complex biolabels the Amide I/II and ester regions are considered (highlighted).

References

1 T. A. Laurence, G. B. Braun, N. O. Reich and M. Moskovits, *Nano Letters*, 2012, **12**, 2912-2917.

2 E. J. Blackie, E. C. L. Ru and P. G. Etchegoin, *Journal of the American Chemical Society*, 2009, **131**, 14466-14472.

3 R. F. Aroca and D. J. Ross, *Appl. Spectrosc.*, 2004, **58**, 324A-338A.

4 A. Hartstein, J. R. Kirtley and J. C. Tsang, *Phys. Rev. Lett.*, 1980, **45**, 201-204.

5 M. Osawa and K.-i. Ataka, *Surf. Sci.*, 1992, **262**, L118-L122.

6 G. Dovbeshko, O. Fesenko and A. Nazarova, *Journal of Physical Studies*, 2006, **10**, 127-134.

7 C. K. Dixit, S. K. Vashit, B. D. MacCraith and R. O'Kennedy, *Nat. Protoc.*, 2011, **6**, 439-445.

8 M. Barber, R. S. Bordoli, R. D. Sedgwick and A. N. Tyler, J. Chem. Soc.-Chem. Comm., 1981, 325-327.

9 M. Karas and F. Hillenkamp, *Anal. Chem.*, 1988, **60**, 2299-2301.

10 M. Adamczyk, A. Buko, Y.-Y. Chen, J. R. Fishpaugh, J. C. Gebler and D. D. Johnson, *Bioconjugate Chemistry*, 1994, **5**, 631-635.

11 F. S. Parker, *Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry*, Plenum Press New York and London, 1983.

12 F. S. Parker and D. M. Kirschenbaum, *Nature*, 1960, **187**, 386-388.

13 M. Majoube and M. Henry, Spectrochim. Acta, Part A: Mol. Spectrosc., 1991, 47, 1459-1466.

14 R. Markuszewski and H. Diehl, *Talanta*, 1980, **27**, 937-946.

15 J. A. Seelenbinder, C. W. Brown, P. Pivarnik and A. G. Rand, *Anal. Chem.*, 1999, **71**, 1963-1966.

16 C. W. Brown, Y. Li, J. A. Seelenbinder, P. Pivarnik, A. G. Rand, S. V. Letcher, O. J. Gregory and M. J. Platek, *Anal. Chem.*, 1998, **70**, 2991-2996.

17 T. Ohishi, J. Non-Cryst. Solids, 2003, 332, 80-86.

18 Y.-F. Fang, Y.-P. Huang, D.-F. Liu, Y. Huang, W. Guo and D. Johnson, *J. Environ. Sci.*, 2007, **19**, 97-102.