Supporting Information

for

Monte Carlo Simulation and SAFT Modeling Study of the Solvation Thermodynamics of Dimethylformamide, Dimethylsulfoxide, Ethanol and 1-Propanol in the Ionic Liquid Trimethylbutylammonium Bis(trifluoromethylsulfonyl)imide

Amir Vahid † and Edward J. Maginn $^{\dagger *}$

[†]Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

* Corresponding author: ed@nd.edu

S1. TRANSFERABLE POTENTIALS

The equation for the classical AMBER/OPLS style force field used here is as follows

*

$$U_{tot} = U_{ext} + U_{int}$$

$$U_{ext} = U_{disp(vdW)} + U_{rep} + U_{pol} + U_{el}$$

$$U_{int} = U_{str} + U_{bend} + U_{tors} + U_{improper}$$

$$U_{tot} = \sum_{\substack{j=1\\ j=1\\ j \neq 1}}^{N-1} \sum_{j=1}^{N} 4\varepsilon_{ij} \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] + \sum_{\substack{j=1\\ j=1\\ j\neq 1}}^{N-1} \sum_{\substack{j=1\\ j\neq 1}}^{N} \frac{q_{i}q_{j}}{r_{j}} + \sum_{\substack{j=1\\ U_{disp(vdW)} + U_{rep}}}^{N-1} \frac{q_{i}q_{j}}{r_{j}} + \sum_{\substack{j=1\\ U_{el}}}^{N-1} \sum_{\substack{j=1\\ U_{el}}}^{N} \frac{q_{i}q_{j}}{r_{j}} + \sum_{\substack{j=1\\ U_{el}}}^{N-1} \sum_{\substack{j=1\\ U_{el}}}^{N} \frac{q_{i}q_{j}}{r_{j}} + \sum_{\substack{j=1\\ U_{disp(vdW)} + U_{rep}}}^{N-1} \frac{q_{i}q_{j}}{r_{j}} + \sum_{\substack{j=1\\ U_{el}}}^{N} \frac{q$$

MERGEFORMAT (1)

where U_{ext} stands for external (intermolecular) energy between distinct molecules and U_{int} is the intramolecular energy between sites belonging to the same molecule, $U_{\text{disp}(vdW)}$ is the van der Waals dispersion energy, U_{rep} is the repulsive energy, U_{pol} is the polarization energy, U_{el} is the electrostatic potential energy, U_{str} is the stretching energy associated with the variation of bond length, U_{bend} is the bending energy arising from the angular fluctuations formed by two adjacent chemical bonds, U_{tors} is the torsion energy caused by the variation of the dihedral angles formed by four successive sites in a chain, U_{improper} is the improper torsion energy pertains to the energy that enforce an aromatic ring or a conjugated structure to keep its planar form. The force fields used in this work are all nonpolarizable and there are no rings or conjugated structures present in the molecular architectures. Therefore, U_{pol} and U_{improper} are omitted from eq *

MERGEFORMAT (1). The constituent terms of the extended equations are: K_r , K_{θ} , and K_{χ} which are energy coefficients for bonds, angles, and dihedrals contributions, respectively, ε_{ij} and σ_{ij} are the energy and size parameters between sites *i* and *j* in the Lennard-Jones (LJ) potential, and q_i is the charge placed on the center of site *i*. Also, Lorentz-Berthelot^{1, 2} combining rules were the basis for calculating of the mixed site-site interactions.

For the $[Tf_2N]$ anion, like Zhong et al.³ and Liu et al.⁴ a scaling factor of ½ has been used for both of the Coulombic and LJ interactions between molecular sites separated by three consecutive bonds. However, this factor set to zero for sites separated by less than three consecutive bonds. The bond, angle, and dihedral terms are taken from Zhong and coworkers³ and their values have been listed in Tables S1 of this Supporting Information. The LJ parameters for the cation, however, were modified from the work of Zhong et al.³ as discussed in subsequent sections. The $[N_{1114}]$ cation is based on the TraPPE-UA force field for alkanes⁵, amines⁶ and ammonium⁷ in which a scaling factor of ½ has been implemented for Coulombic and LJ interactions. In this case, there is also a need for LJ parameter optimization based on the experimental liquid density and surface tension of $[N_{1114}][Tf_2N]$, as discussed in the next section.

For EtOH and C₃OH, bonds, angles, dihedral, and LJ terms are taken from a UAM version of TraPPE-Alcohols^{6, 8} which applies a scaling factor of ½ to both the LJ and Coulombic terms. This force field has been tested against experimental vapor pressure, heat of vaporization, and liquid density data and hence there was no need for further calibration/optimization.

DMF and DMSO follow a rigid OPLS type of the force field proposed by Chalaris and Samios⁹⁻¹¹, and Mancera and coworkers¹². Clearly, the 1-4 scaling parameter is set to ¹/₂ for LJ and Coulombic terms in an OPLS force field style. For DMSO, however, another Gromos type

S3

force field based on traditional potential types for biomolecules has also been proposed and

calibrated against the experimental vapor pressure and liquid density data.

Non-bonded terms					
	vdW parameters	Charges (e)			
Ethanol					
UA sites	σ / Å	ε/K	<i>q</i> / e		
CH ₃ ^{alk}	3.75	98.0	0.00		
CH ₂ ^A	3.95	46.0	0.265		
OA	3.02	93.0	-0.700		
HA	0.00	0.00	0.435		
	1-Propanol				
UA sites	$\sigma / \text{\AA}$	ε/K	<i>q</i> / e		
CH ₃ ^{alk}	3.75	98.0	0.00		
CH ₂ ^{alk}	3.95	46.0	0.000		
CH ₂ ^A	3.95	46.0	0.265		
OA	3.02	93.0	-0.700		
H ^A	0.00	0.00	0.435		
	Dimethylformamide				
UA sites	σ /Å	ε/ K	<i>q</i> / e		
CH ₃ ^{DMF}	3.80	69	0.28		
NDMF	3.20	144	-0.57		
CDMF	3.70	47.3	0.45		
ODMF	2.96	226	-0.50		
HDMF	2.20	7.18	0.06		
	Dimethylsulfoxide				
UA sites	$\sigma/\text{\AA}$	ε/K	<i>q</i> / e		
CH ₃ DMSO	3.81	125	0.160		
SDMSO	3.47	214	0.139		
ODMSO	2.83	176	-0.459		
Bis(trifluoromethylsulfonyl)imide					
UA sites	$\sigma/\text{\AA}$	ε/K	<i>q</i> / e		
O ^{Tf2N}	2.96	106	-0.398		
CF ₃ ^{Tf2N}	4.47	80.5	-0.095		
S ^{Tf2N}	3.56	126	0.627		
N ^{Tf2N}	3.25	85.6	-0.272		
Trimethylbutylammonium					
UA sites	$\sigma/\text{\AA}$	ε/K	<i>q</i> / e		

Table S1. Force field parameters for the solutes and the ionic liquid considered in this work.

CH ₃ ^N	3.57	98.0	0.175	
CH ₂ ^N	3.75	46.0	0.175	
NAM	3.25	185	0.100	
CH ₂ ^{alk}	3.95	46.0	0.00	
CH ₃ ^{alk}	3.75	98.0	0.00	
Bonded terms				
	Ethanol			
Bond	$K_l/ K Å^{-2}$	l ₀ / Å		
CH ₃ ^{alk} - CH ₂ ^A	Fixed	1.54		
CH ₂ ^A - O ^A	Fixed	1.43		
O ^A -H ^A	Fixed	0.945		
	1-Propanol			
	$K_l/ K Å^{-2}$	<i>l</i> ₀ / Å		
CH ₃ ^{alk} - CH ₂ ^{alk}	Fixed	1.54		
CH ₂ ^{alk} - CH ₂ ^A	Fixed	1.54		
$CH_2^A - O^A$	Fixed	1.43		
O ^A -H ^A	Fixed	0.945		
	Dimethylformamide	e		
	$K_l/ \text{K} \text{Å}^{-2}$	l_0 / Å		
CH ₃ ^{DMF} - N ^{DMF}	Fixed	1.44		
N ^{DMF} - C ^{DMF}	Fixed	1.13		
CDMF- ODMF	Fixed	1.23		
HDMF-CDMF	Fixed	1.12		
	Dimethylsulfoxide			
	$K_l/ \text{K} \text{Å}^{-2}$	l_0 / Å		
CH ₃ ^{DMSO} - S ^{DMSO}	Fixed	1.80		
S ^{DMSO} - O ^{DMSO}	Fixed	1.53		
	Bis(trifluoromethylsulfonyl)imide			
	$K_l/ \text{K} \text{Å}^{-2}$	l_0 / Å		
CF ₃ ^{Tf2N} - S ^{Tf2N}	Fixed	2.40		
O ^{Tf2N} - S ^{Tf2N}	Fixed	1.45		
S ^{Tf2N} - N ^{Tf2N}	Fixed	1.57		
	Trimethylbutylammonium			
CH ₃ ^N -N ^{AM}	Fixed	1.45		
CH ₂ ^N - N ^{AM}	Fixed	1.45		
CH_2^N - CH_2^{alk}	Fixed	1.54		
CH ₂ ^{alk} - CH ₂ ^{alk}	Fixed	1.54		
CH ₂ ^{alk} - CH ₃ ^{alk}	Fixed	1.54		
Angle terms				
	Ethanol			
Angle		K_{θ} / K rad ⁻²	θ_0 / degrees	
CH ₃ ^{alk} - CH ₂ ^A -O ^A		25200	109.47	

CH_2^{A} - O^{A} - H^{A}			27700	108.5		
		1-Propanol				
			K_{θ} / K rad ⁻²	θ_0 / degrees		
CH ₃ alk- CH ₂ alk- CH ₂ A			31250	114		
CH ₂ ^{alk} - CH ₂ ^A -O ^A			25200	109 47		
CH ₂ ^A -O ^A -H ^A			27700	108.5	108.5	
			27700	100.0		
		Dimethylformamide	<u> </u>			
			K_{ρ}/K rad ⁻²	θ_0 / degrees		
HDMF-CDMF-NDMF			Fixed	114.5		
H ^{DMF} -C ^{DMF} -O ^{DMF}			Fixed	122.5		
NDMF_CDMF_ODMF			Fixed	122.5		
CDMF-NDMF-CH ₂ ,DM	ЛF		Fixed	120		
C -N - CH _{3,1} CDMF NDMF CH. DMF			Fixed	110		
CH ₂ , DMF ₋ NDMF ₋ CH	DMF		Fixed	121		
	3,2	Dimethylsulfoxide	1 1/04	121		
		Dimenty isunovide	K_{o}/K rad ⁻²	A. / degrees		
ODMSO_SDMSO_CH_DM	MSO		Fixed	106.75		
CH_DMSO_ SDMSO_ CH	J_DMSO		Fixed	97.40		
Dig(tri		rifluoromethylsulfony	Dimide	77.40		
	Dis(u	intuoroniculyisullony	$K_{\rm r}/K$ rad-2	A. / degrees		
CE TÊN STÊN OTÊN			X_{θ} K lau	103.2		
$\begin{array}{c} C\Gamma_{3} & -S & -O \\ \hline C\Gamma_{2}N & NTf2N & CTf2N \\ \hline \end{array}$	$CF_3^{T2N} = S^{T2N} - O^{T2N}$			105.2		
NTT2N STT2N OTT2N			30800.201	112.7		
$\frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}$			33329.045	112.7		
CE TÊN STÊN NITÊN		20709 102	114.0			
$\frac{CF_3^{112}-S^{112}-1}{Trimethylbytylemmenium}$						
I rimethylbutylammonium						
			Λ_{θ}/Λ rad ²	θ_0 / degrees		
NAM OUN NOLL alk			251/8	109.5		
NAM-CH ₂ ^N -CH ₃ ^{alk}		28300	109.5			
CH_2^{N} - CH_2^{aik} - CH_2^{aik}			31250			
CH ₂ ^{aik} -CH ₂ ^{aik} -CH ₃ ^{aik}	$CH_2^{aik}-CH_2^{aik}-CH_3^{aik}$		31250	114	1	
Torsion terms			<u> </u>			
		Ethanol (CHARMM)	/1 - 11	(1 - 1	
		a_0 / kJ mol ⁻¹	$a_1 / kJ mol^{-1}$	a_2 / kJ mol ⁻¹	a_3 / kJ mol ⁻¹	
$CH_3^{alk}-CH_2^A-O^A-H^A$	L	0	1.74	-0.243	1.56	
		1-Propanol (Cl	HARMM)			
		a_0 / kJ mol ⁻¹	$a_1 / kJ mol^{-1}$	$a_2 / kJ mol^{-1}$	a_3 / kJ mol ⁻¹	
CH ₃ ^{alk} -CH ₂ ^{alk} -CH ₂ ^A -O ^A		0	1.47	-0.444	6.40	
CH ₂ ^{alk} -CH ₂ ^A -O ^A -H ^A		0	1.75	-0.243	1.56	
		Dimethylformamide	e (OPLS)			
			a_0 / kJ mol ⁻¹	n	δ / kJ mol ⁻¹	
H ^{DMF} -C ^{DMF} -N ^{DMF} -C	$H_{3,1}^{DMF}$		0	0	41.84	
H ^{DMF} -C ^{DMF} -N ^{DMF} -CH _{3 2} ^{DMF}			1	2	41.84	

O ^{DMF} -C ^{DMF} -N ^{DMF} -CH _{3,1} ^{DMF}		1	2	41.84	
O ^{DMF} -C ^{DMF} -N ^{DMF} -CH _{3.2} ^{DMF}		1	2	41.84	
	Dimethylsulfoxide (no dihedral)				
		,			
Bis(trifluoromethylsulfonyl)imide (mixture of OPLS & CHARMM)					
	a_0 / kJ mol ⁻¹	a_1 / kJ mol ⁻¹	a_2 / kJ mol ⁻¹	a_3 / kJ mol ⁻¹	
CF3 ^{Tf2N} -S ^{Tf2N} -N ^{Tf2N} -S ^{Tf2N}	0	3.83	-4.37	-1.60	
		a_0 / kJ mol ⁻¹	n	δ / kJ mol ⁻¹	
S ^{Tf2N} -N ^{Tf2N} -S ^{Tf2N} -O ^{Tf2N}		3.35	3	0	
	a_0 / kJ mol ⁻¹	a_1 / kJ mol ⁻¹	a_2 / kJ mol ⁻¹	a_3 / kJ mol ⁻¹	
$S^{Tf2N}-N^{Tf2N}-S^{Tf2N}-CF_3^{Tf2N}$	0	3.83	-4.37	-1.60	
Trimethylbutylammonium (mixture of OPLS & CHARMM)					
		a_0 / kJ mol ⁻¹	n	δ / kJ mol ⁻¹	
CH ₃ ^N -N ^{AM} -CH ₂ ^N - CH ₂ ^{alk}		0.65	3	59.99	
N ^{AM} -CH ₂ ^N -CH ₂ ^{alk} -CH ₂ ^{alk}		0.65	3	-179.99	
	a_0 / kJ mol ⁻¹	a_1 / kJ mol ⁻¹	a_2 / kJ mol ⁻¹	a_3 / kJ mol ⁻¹	
CH ₂ ^N -CH ₂ ^{alk} -CH ₂ ^{alk} - CH ₃ ^{alk}	0	2.79	-0.57	6.58	

S2. TraPPE-UA RESULTS FOR ETHANOL AND 1-PROPANOL

Figure S1. Vapor pressure and phase coexistence curve for ethanol based on TraPPE-UA force field.¹³⁻¹⁵

Figure S2. Vapor pressure and phase coexistence curve for 1-propanol based on TraPPE-UA force field.

S3. EXCESS AND MIXING VOLUME TRENDS

Figure S3. Trends in the excess volume of the mixing based on the experimental data and PCIP-SAFT theory for EtOH (a), C3OH (b), DMF (c), and DMSO (d). The simulation results oscillate around zero and are not shown here.

Figure S4. Comparison between experimental, simulation, and PCIP-SAFT theory for mixture molar volumes versus mole fraction of EtOH. The experimental data are taken from Massel et al.¹⁶ The open symbols show the experimental data, the filled symbols are the MC-NPT simulation results, and the lines represent the PCIP-SAFT theory results.

Figure S5. Comparison between experimental, simulation, and PCIP-SAFT theory for mixture molar volumes versus mole fraction of C3OH. The experimental data are taken from Massel et al.¹⁶ The open symbols show the experimental data, the filled symbols are the MC-NPT simulation results, and the lines represent the PCIP-SAFT theory results.

Figure S6. Comparison between experimental, simulation, and PCIP-SAFT theory for mixture molar volumes versus mole fraction of DMF. The experimental data are taken from Massel et al.¹⁶ The open symbols show the experimental data, the filled symbols are the MC-NPT simulation results, and the lines represent the PCIP-SAFT theory results.

Figure S7. Comparison between experimental, simulation, and PCIP-SAFT theory for mixture molar volumes versus mole fraction of DMSO. The experimental data are taken from Massel et al.¹⁶ The open symbols show the experimental data, the filled symbols are the MC-NPT simulation results, and the lines represent the PCIP-SAFT theory results.

S4. IONIC LIQUID SITE-SOLUTES SDF

Figure S8. Spatial distribution function for (a) DMF-CF3^{Anion}, (b) DMF-N^{Anion}, (c) DMF-O^{Anion},
(d) DMF-S^{Anion}, (e) DMSO- CF3^{Anion}, (f) DMSO- N^{Anion}, (g) DMSO- O^{Anion}, (h) DMSO- S^{Anion}.
The isosurface value is chosen to be 2.313 pm⁻³ at concentration of 0.5 of the solutes.

SUPPORTING REFERENCES

- 1. H. A. Lorentz, *AdP*, 1881, **248**, 127-136.
- 2. D. Berthelot, *l'Académie des Sciences*, 1898, **126**, 1703-1855.
- 3. X. Zhong, Z. Liu and D. Cao, *J Phys Chem B*, 2011, **115**, 10027-10040.
- 4. Z. P. Liu, X. P. Wu and W. C. Wang, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1096-1104.
- 5. M. G. Martin and J. I. Siepmann, J. Phys. Chem. B., 1998, 102, 2569-2577.

- C. D. Wick, J. M. Stubbs, N. Rai and J. I. Siepmann, J. Phys. Chem. B., 2005, 109, 18974-18982.
- 7. L. Zhang and J. I. Siepmann, Collect. Czech. Chem. Comm., 2010, 75, 577-591.
- K. A. Maerzke, N. E. Schultz, R. B. Ross and J. I. Siepmann, *J. Phys. Chem. B.*, 2009, 113, 6415-6425.
- 9. M. Chalaris and J. Samios, J. Mol. Liq., 2002, 98-9, 399-409.
- 10. M. Chalaris and J. Samios, J. Chem. Phys., 2000, 112, 8581-8594.
- 11. M. Chalaris and J. Samios, J. Mol. Liq., 1998, 78, 201-215.
- R. L. Mancera, M. Chalaris, K. Refson and J. Samios, *Phys. Chem. Chem. Phys.*, 2004, 6, 94-102.
- 13. R. Gopal and S. A. Rizvi, J. Ind. Chem. Soc., 1968, 45, 13-&.
- 14. C. M. French and K. H. Glover, *Trans. Faraday Soc.*, 1955, **51**, 1418-1427.
- 15. W. G. Boyle and R. J. Robinson, *Anal. Chem.*, 1958, **30**, 958-961.
- M. Massel, A.-L. Revelli, E. Patharik, R. R. Novak, M. Rauh and J. F. Brennecke, J. Chem. Eng. Data, 2014, submitted.