Electronic Supplementary Information

Water-bath assisted convective assembly of aligned silver nanowire films for transparent

electrodes

Sheng-Kai Duan, Qiao-Li Niu, Jun-Feng Wei, Jie-Bin He, Yi-An Yin, and Yong Zhang*

Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology,

South China Normal University, Guangzhou 510631, China

^{*} Corresponding author.

E-mail address: zycq@scnu.edu.cn

Fig. S1. Photographs of dropping process. (a) Drop AgNW@IPA on ultrapure water at room temperature. (b) Drop AgNW@IPA on ultrapure water surface with a 80 °C water bath. (c) Drop AgNW@water on ultrapure water surface with a 80 °C water bath. (d) Drop AgNW@IPA on IPA surface with a 80 °C water bath.

Note: To achieve a visible assembled Ag nanowires film, the concentration of the Ag nanowires used in Fig. S1 is higher than that in Fig. 1-7.

Fig. S2. Transmission spectra of AgNW films with the increasing dip-coating layer number fabricated at (a) room temperature (RT), (b) 50 °C, (c) 70 °C, (d) 80 °C and (e) 90 °C, respectively.

Fig. S3. AFM images and RMS data of AgNW films assembled fabricated at the water-bath temperature of 80 °C with (a) one layer, (b) two layers, (c) three layers, (d) four layers, and (e) five layers, respectively.

Table S1. Sheet resistance of OM-AgNW films by the different water-bath temperatures and dipcoating layer number. Note: Each of the sheet resistances reported is an average value obtained after at least ten multiple measurements.

Dip-coating layer number	1	2	3	4	5
$R_{sq}(\Omega/sq)$ @RT	∞	∞	∞	∞	∞
$R_{sq}\left(\Omega/sq\right)\textcircled{0}50~^{\circ}C$	∞	68.7	28.4	18.2	12.3
$R_{sq}\left(\Omega/sq\right)\textcircled{0}{}^{\circ}C$	∞	33.0	12.9	10.1	7.8
$R_{sq}\left(\Omega/sq\right) @80 \ ^{\circ}\mathrm{C}$	∞	21.9	11.4	8.5	6.5
R _{sq} (Ω/sq) @90 °C	∞	19.2	9.9	7.1	5.1